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Abstract  

To develop a better understanding of the abrupt Dansgaard-Oeschger mode of climate 

change, it is essential that we establish whether the ice sheets are actively involved, as 

trigger or amplifier, or whether they merely respond in a passive manner. This requires 

careful assessment of the fundamental issues of magnitude and phasing of global ice-

volume fluctuations within Marine Isotope Stage 3 (MIS 3), which to date remain 

enigmatic. We review recent advances in observational studies pertaining to these key 

issues, and discuss the implications for modelling studies. Our aim is to construct a robust 

stratigraphic framework for the MIS 3 period regarding sea-level variability, using the 

most up-to-date arguments available by combining insights from both modelling and 

observational approaches. 

 

 1

mailto:siddall@ldeo.columbia.edu


1. Introduction - MIS 3 climatic context 30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

                                                

Marine Isotope Stage 3 (MIS 3) is the period between 60 and 25 kyr BP* when climatic 

conditions fluctuated over a broad range on millennial time scales (Fig. 1). The study of 

MIS 3 may help us to understand how the climate behaves when undergoing rapid 

changes and therefore might also further increase our understanding of rapid, 

anthropogenic climate change. To develop a better understanding of these abrupt climate 

changes during MIS 3, it is essential that we establish whether the ice sheets were 

actively involved, as trigger or amplifier, or whether they merely respond in a passive 

manner. This requires careful assessment of the fundamental issues of magnitude and 

phasing of global ice-volume fluctuations within MIS 3, which to date remain enigmatic 

[e.g., Siddall et al., 2003; Rohling et al., 2004; Knutti et al., 2004; Flueckiger et al., 2006; 

Arz et al., 2007]. Here we review and summarise recent progress on reconstructing 

eustatic** sea level during this period. Our aim is to construct a robust stratigraphic 

framework for the MIS 3 period regarding eustatic sea-level variability, using the most 

up-to-date information available. The various eustatic sea-level reconstructions used here 

are listed in table 1, and geographic locations are shown in Fig. 2. 

 

1.1 Broad context 

MIS 3 has been defined by variations in the oxygen isotope record in ocean sediment 

cores on orbital ‘Milankovitch’ timescales [e.g., Imbrie et al. 1984], where minima in 

deep-sea benthic stable oxygen isotope records in general correspond to reduced global 

ice volume, hence relatively high sea level [e.g., Imbrie et al., 1984; Bassinot et al. 1994; 

 
* BP = before present where ‘present’ represents 1950 
** Here we consider eustatic sea level variations and not local isostatic effects related to 

local rebound in areas which might be subject to the ‘broad-shelf effect’ [Bloom, 1967] or 

glacial rebound. All of the records we show here have either been corrected for these 

effects or are not affected by them because of their distance from large ice sheets or 

because isostasy does not affect the records. For example isostasy does not affect benthic 

oxygen isotope records. 
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Waelbroeck et al., 2002]. Major peaks and troughs in the oxygen isotope record were 

assigned a numbered Marine Isotope Stage (MIS), with odd numbers for interglacials and 

even numbers for glacials. An exception to this general rule is MIS 3, a period when sea 

level ranged between 60 and 90 m below the present [e.g., Chappell, 2002; Waelbroeck et 

al., 2002; Siddall et al., 2003; this paper], and which therefore cannot be described as an 

interglacial. Also, MIS 3 occurred between 60 and 25 Ka before the present, which would 

not agree with the ‘typical’ ~100-kyr spacing of interglacial periods during the last ~1 

million years [e.g., Lisiecki and Raymo, 2005].  
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The long-term glacial-interglacial waxing and waning of global ice volume has been 

broadly linked to summer insolation at 65oN, the latitude of maximum continentality in 

the northern hemisphere, which corresponds to the position of the large northern 

hemisphere ice sheets [e.g., Imbrie and Imbrie, 1980 Imbrie et al., 1984; Bassinot et al. 

1994]. This so-called “Millankovitch”, or orbital, insolation forcing of the ice ages [e.g., 

Imbrie et al., 1984; Bassinot et al. 1994] is dominated by variability in orbital 

eccentricity (400, 125 and 95 kyr), axial tilt (41 kyr) and precession (24, 22 and 19 kyr). 

The orbital insolation forcing of the high-latitude northern ice sheets did not fluctuate 

strongly through MIS 3 but it was higher at the start of MIS 3 than at the end (Fig. 3).  

 

1.2 Millennial-scale variability 

Ice-core proxy records of high latitude Northern Hemisphere temperature reveal a 

distinctive pattern of repeated decadal-scale warming events of 8-15 ºC during MIS 3, 

known as Dansgaard-Oeschger (D-O) events [for example, Blunier et al., 1998; Stuiver 

and Grootes, 2000; Blunier and Brook, 2001; Huber et al., 2006]. These rapid warmings 

are interspersed with cold periods such that MIS 3 is a period of substantial millennial-

scale climate variability (Fig. 1). This variability is found throughout much of the 

Northern Hemisphere in marine sediments and also continental records [Shackleton et al., 

2000; Wang et al., 2001; Voelker, 2002; Rohling et al., 2003; Denton et al., 2005]. Clark 

et al. [2002; 2007] provide a robust evaluation of this pattern of distribution. D-O events 

often appear clustered in ‘Bond cycles’ - groups of up to four with a longer warm period 
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followed by up to three shorter warm periods, interspersed with cold periods [Bond and 

Lotti, 1995]. These Bond cycles end in a cold period, during which a so-called Heinrich 

event (i.e. a massive deposition of IRD) occurs in the North Atlantic between about 40 

and 50°N [see overview in Hemming, 2004]. 
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Blunier et al. [1998] and Blunier and Brook [2001] synchronised ice-core records from 

Antarctica and Greenland using variations in the concentration of atmospheric methane (a 

globally well-mixed gas) in air bubbles enclosed within the ice. This work showed that 

D-O events in Greenland correspond to at least four slower, smaller (relative to 

Greenland) changes in Antarctica. The onsets of the Bond cycles in Greenland 

correspond to the warmest peaks in Antarctic temperature (Antarctic events A1 to A4), 

followed by more subdued variability (Fig. 1) [Stocker and Johnsen, 2003; EPICA 

Community members, 2006]. This subdued variability has been controversial because the 

magnitude of the temperature change was only ambiguously resolved in the Byrd ice core 

[Johnsen et al. 1992; Blunier et al. 1998; Blunier and Brook 2001]. Stocker and Johnsen 

[2003], Knutti et al. [2004] and Siddall et al. [2006a] used variations on a simple model 

which assumed a lagged, opposite response in Antarctic temperature to Greenland 

temperature changes. This work found that the Byrd temperature proxy record was 

consistent with the assertion that the shorter D-O events correspond to periods of 

warming and cooling in Antarctica, despite being poorly resolved. Recent results from 

the EPICA Dronning Maud Land (EDML)[EPICA Community Members 2006] ice core 

supports this conclusion by unambiguously resolving the low-magnitude temperature 

variability which is suggested to correspond to periods of shorter D-O events and 

demonstrating a robust, linear relationship between the duration of D-O cold stadial 

periods and Antarctic warming. We will refer to the ensemble of Antarctic temperature 

variability during MIS 3 as AA variability. AA variability has also been referred to as the 

‘southern response’ or ‘southern mode’ [Alley and Clark, 1999; Clark et al. 2002; 2007]. 

 

The relative timing between climate fluctuations of the northern and southern high 

latitudes, as inferred from the methane synchronisation [Blunier et al., 1998; Blunier and 
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Brook, 2001], has also been observed between planktic (D-O like variability) and benthic 

foraminiferal stable oxygen isotope ratios (Antarctic (AA) -like variability) in a single set 

of samples from marine sediment core MD95-2042 from 3142 m water-depth on the 

Portuguese margin (Fig. 1) [Shackleton et al., 2000]. Similar, millennial variability 

appears to be a robust phenomenon within the climate system, occurring over multiple 

periods in the past linked to periods when the ice sheets where of intermediate size - 

smaller than the glacial maximum ice sheets, yet larger than interglacial ice sheets [Oppo 

et al., 1998; McManus et al., 1999; Siddall et al., 2007].  Observations place this 

‘intermediate’ range of ice volume at the equivalent of 40 to 100 m of global sea-level 

lowering [Siddall et al., 2007]. The apparently robust repetition of millennial-scale 

variability in the earth’s climate system at several different Late Pleistocene periods fuels 

the large research interest focussed on the link between ice-sheet extent and abrupt 

climate variability [Siddall et al., 2007]. For example Clark et al. [2001] explore the link 

between the southward extent of the Laurentide ice sheet and the routing of meltwater, 

which in turn provides a control on the transport of heat in the surface waters of the 

Atlantic (i.e. the Atlantic Meridional Overturning Circulation, see below). 
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1.3 Mechanisms of millennial climate change 

D-O variability during MIS 3 occurs on millennial time scales and so cannot be directly 

explained by orbital forcing. Current concepts instead link the D-O variability to other 

external forcing, and/or to internal processes within the earth’s climate system. Some 

authors have suggested that D-O variability follows a regular ~1500-year period [Bond et 

al., 1997; Mayewski et al., 1997; Alley et al., 2001; Schulz, 2002; Rahmstorf, 2003]. 

Studies have ascribed this regularity to solar output variability, but – as yet – there is little 

evidence for solar variability on a ~1500 year period [Stuiver et al., 1993; Bard and 

Frank, 2006], although it might arise as a multiple of shorter-period solar variability [e.g. 

Bond et al., 2001; Braun et al., 2005]. The large, apparently quasi-regular variability has 

been ascribed to stochastic resonance within the earth’s climate system in order to 

explain the fact that the periodicity may not always be 1500 years but sometimes 

multiples of 1500 years [Alley et al., 2001; Rahmstorf and Alley, 2002; Ganapolski and 
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Rahmstorf, 2002]. However, other work argues that there is no ~1500 year periodicity 

[e.g. Wunsch, 2000; Ditlevsen et al., 2007]. Alternative explanations focus on 

mechanisms internal to the earth system, paced more loosely by factors such as the heat 

storage capacity of the Southern Ocean and the residence-time of deep water masses in 

the ocean [e.g. Dansgaard et al. 1984; Broecker et al. 1985; Stocker et al. 1992; Schiller 

et al. 1997; Stocker and Johnsen, 2003]. Ditlevsen [1999] and Ditlevsen et al. [2005] 

suggest that the abrupt variability is due entirely to noise in the climate system, for 

example via erratic meltwater releases from the margins of the large continental ice 

sheets [e.g. Clark et al. 2001]. It is clear that there is no consensus regarding the 

regularity of D-O events and the underlying mechanisms. One of the key aspects that is 

unconstrained in this discussion concerns the timing and behaviour of global sea-level 

variability, both as a measure of ice-sheet growth and decay, and as a measure of 

freshwater extraction from, and addition to, the world ocean. This is discussed in the 

following paragraphs. 
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A wide range of modelling studies over the last decades [among many others, Stocker et 

al. 1992; Manabe and Stoufer 1997; Ganapolski and Ramstorf, 2002; Stocker and 

Johnsen, 2003; Knutti et al., 2004; Schmittner et al., 2005] indicate that a flux of 

freshwater into the North Atlantic strongly affects the oceanic northward heat transport 

associated with the Atlantic Meridional Overturning Circulation (AMOC)*. The large 

northern hemisphere ice sheets are a major potential source of freshwater to the North 

Atlantic, either via iceberg calving events or in the form of meltwater events [e.g. Clark 

et al. 1999].  

 

 
*  The AMOC is the large-scale transport of salt and heat in the Atlantic by the wind and 

density-driven circulation. Density-driven circulation results from high-latitude cooling 

and salt-rejection during sea-ice formation, which generates dense water masses at the 

surface and thereby oceanic convection. This density-driven circulation may be sensitive 

to freshwater input, which reduces the surface density, preventing convection.  
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Major iceberg-calving events are known as ‘Heinrich Events’, which are marked by 

Heinrich Layers of Ice Rafted Debris (IRD) across large areas of the North Atlantic (as 

first described by Heinrich [1988]). ‘Heinrich events’ coincide with the D-O stadials at 

the conclusion of the Bond cycles [see Hemming, 2004 for a review]. Estimates for the 

freshwater input to the North Atlantic associated with Heinrich events vary between 2 

and 15 m of sea-level equivalent ice volume [Chappell 2002; Hemming, 2004; Roche et 

al. 2004; Rohling et al., 2004]. Whether or not the actual figure is 2 or 15 m of sea-level 

equivalent ice volume, Heinrich events provide an unambiguous indication of substantial 

(ice-berg) meltwater release into the North Atlantic and have formed an impetus for 

modelling studies to consider freshwater pulses as a trigger for D-O variability [see 

Flückiger et al., 2006 for a review].  

 

Some workers, however, question the importance of the AMOC’s northward heat 

transport for the temperature variability around the North Atlantic, and instead focus 

more on changes in the zonality of atmospheric circulation over the North Atlantic [for 

overviews, see Seager et al., 2002; Seager and Battisti, 2006]. As alternatives to the 

effects of Heinrich events on high-latitude convection as a trigger for D-O variability, 

other studies have concentrated on mechanisms that centre on shifts in the main locus of 

deep-water formation. These include: atmospheric freshwater transport between the 

Atlantic and Pacific [Leduc et al. 2007]; insulation of the surface ocean by sea ice [e.g. Li 

et al., 2005] and; local Nordic Sea freshwater forcing from melt-water and ice rafing 

[Lekens et al., 2006]. The significance of the seasonal imprint of different mechanisms 

for the ice-core temperature record and ice-sheet mass balance is discussed by Denton et 

al., [2005]. Depending on the model in question, either D-O stadials or interstadials are 

considered to be the ‘perturbed’ or ‘agitated’ states in the system [Ganapolski and 

Ramstorf, 2002; Stocker and Johnsen, 2003]. In an alternative view, the MIS 3 climate 

may have been permanently in a state of disequilibrium [Ditlevsen, 1999; Ditlevsen et al., 

2005]. 

 

In order to understand abrupt climate changes during MIS 3 we must establish whether 

the ice sheets have an active involvement, act as trigger or amplifier, or merely respond 
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in a passive manner (i.e. as an integrated response to the temperature changes over the 

duration of Bond cycles or AA climate events). Careful assessment of the magnitude and 

phasing of global ice-volume fluctuations within MIS 3 will help us to achieve this goal.  

 

2. Stable oxygen isotope ratios 

Stable oxygen isotope ratios measured on fossil calcite tests of unicellular zooplankton 

and benthos (foraminifera) are widely accepted as an approximate indicator of long term 

variations in global ice volume (hence eustatic sea level). The purpose of including these 

records here is to begin to build a general picture of MIS 3 sea level variations, rather 

than to consider absolute values.  

 

2.1 Using stable oxygen isotope records to infer sea level change 

Rohling and Cooke [1999] provide a general review of stable oxygen isotope 

fractionation in the earth system, and we here summarise only the aspects relevant to the 

problem at hand. Compared to 18O, the lighter 16O isotope is preferentially evaporated 

from the ocean. In turn, Rayleigh distillation in the atmosphere causes strong relative 

enrichment of 16O in high-latitude precipitation [Dansgaard, 1964]. During glacial 

periods, growth of the large continental ice sheets leads to an increase of the 18O / 16O 

ratio in ocean water because more of the global inventory of 16O becomes contained in 

the ice sheets. In this way the oxygen isotope ratio in foraminifera is sensitive to global 

ice volume. However, this representation is complicated by variability of isotope ratios 

within the oceans due to differences in the evaporation and precipitation influences on 

surface water isotope ratios, advection and mixing of water masses from different source 

regions (with different isotopic signatures), and the temperature-dependent isotope 

fractionation between the water in which the foraminifera live and deposit their 

carbonates shells [e.g., Shackleton and Opdyke, 1973; Rohling and Bigg, 1998; Schmidt, 

1999; Lea et al., 2002; Wadley et al., 2002; Waelbroeck et al., 2002].  

 

If the mean isotopic composition of the ice caps remained constant while they changed in 

size, and if the temperature variations were known and the water mass structure of the 
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oceans was constant, sea level could be accurately estimated from marine isotope records. 

In practice, the ice composition and ocean structure are usually assumed to be constant 

and then sea level is estimated after subtraction of a temperature effect, which may be 

either measured or hypothesised [Shackleton, 1987]. Glacial to interglacial variation in 

oxygen isotope ratios in water, as measured on pore waters in marine sediment cores, 

suggests some degree of spatial heterogeneity between ocean basins within a range of 0.7 

to 1.3 ‰ [Adkins et al., 2002]. Because the observations include the Pacific Ocean, the 

Southern Ocean and the Atlantic Ocean we assume that this should reasonably capture 

the range of possible values within ocean basins and around the globe. 

 

We present stable oxygen isotope records for deep-sea benthic and planktic foraminifera 

from sediment cores recovered at a variety of locations in the world ocean. Where the 

records have not been explicitly scaled to sea level in the literature, we take the range of 

measured relationships between oxygen isotopes and sea level found by Adkins et al. 

[2002]. Specifically, we: take a middle value of 1 ‰  for 120 m sea-level change; use 

values of 0.7 and 1.3 ‰  for 120 m sea-level change to indicate uncertainties to our 

estimate; and normalise the records to an LGM sea level of 120 m below the present 

[Fairbanks et al., 1989; Peltier and Fairbanks, 2006]. We normalise the records by 

fixing the mean value of the records during the LGM period (defined by the peak in the 

benthic oxygen isotope values around 19 – 21 ka BP) to 120 m below present. There is 

some disagreement in the literature over the level of the LGM lowstand (-120 m, 

Fairbanks [1989], Peltier and Fairbanks [2006]; or -135 m Yokoyama et al., 2000). Here 

we are most interested in the variability of sea level during MIS 3. The chosen LGM sea 

level value has no impact on our conclusions regarding sea-level fluctuations during MIS 

3. However, the absolute estimates may be as much as 15 m above the real values if the 

lowstand reached -135 m, rather than the -120 m we assume here.  

 

Following the work of Adkins et al. [2002] and Adkins and Shrag [2003] we assume that 

deep ocean temperatures approached the freezing point of seawater during the glacial 

period and were therefore relatively constant. This assumption requires that there is a 

transition in deep ocean mean temperature between glacial and interglacial periods of 2oC 
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[Chappell and Shackleton 1986; Cutler et al. 2003]. We are only interested in sea-level 

fluctuations during MIS 3 and therefore our approach does not account for this implied 

transition in deep ocean temperatures. Consequently, it greatly overestimates the sea-

level highstands of the peak interglacials MIS 5e and MIS 1. However, the approach 

seems valid through MIS 3, as witnessed by agreement with sea-level indicators from 

fossil coral reefs and a similar approach has been followed previously [e.g., Chappell and 

Shackleton, 1986; Cutler et al., 2003].  
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Reproducibility of replicate oxygen isotope analyses is typically less than 0.1 ‰ [e.g. 

Rohling and Cooke 1999], which is equivalent to between 9 and 17 m. This does not 

represent the complete uncertainty in interpreting the oxygen isotope ratios in terms of 

sea level because of the effects of temperature and hydrographic changes on the record. 

For example a 1oC change in temperature is equivalent to a 0.26 ‰ change in oxygen 

isotope ratios [Kim and O’Neil, 1997], or between 24 and 45 m of sea-level change. 

Evidently the benthic isotopes should be considered predominantly as a qualitative 

measure of ice-volume change. 

 

More sophisticated methods of inferring sea-level records from benthic oxygen isotope 

records have also been used. For example, Bintanja et al. [2005] used an ice-sheet model 

coupled to a model of benthic isotope fractionation to derive both sea level and high-

latitude temperature with some success. By using a stacked benthic isotope record and 

considering individual as well stacked isotope record, the approach of Bintanja et al. 

[2005] takes tentative steps to account for the hydrographic differences between ocean 

basins which affect the benthic oxygen isotope record.  

 

Because we are attempting to better understand the common stratigraphy of the benthic 

oxygen isotope records, we opt for the simple approach described here and concentrate 

only on the broad common features in the various records considered. We then make 

further comparisons with more sophisticated approaches such as that outlined by Bintanja 

et al. [2005]. These features are briefly outlined below. 
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2.2 Benthic foraminiferal oxygen isotope records 289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

Isotope records from benthic foraminifera commonly dominate the study of ice 

volume/sea level at longer time scales, because planktic records from the surface ocean 

are subject to greater variations of the oxygen isotope ratio than benthic records from the 

deep ocean, due to much greater temperature variability and regional variations in the 

freshwater budget [e.g., Rohling and Bigg, 1998; Wadley et al., 2002]. However, in the 

case of benthic foraminifera, there normally are only very low numbers of suitable 

specimens for analysis per unit sample volume in deep-sea sediments, because of depth-

dependent reduction of the organic (i.e., food) flux to the sea floor. As a consequence, 

there exist only a handful of benthic records with adequate resolution to unambiguously 

resolve the variability within MIS 3, but this number is steadily increasing.  

 

Labeyrie et al. [1987] and Shackleton [1987] outlined two early approaches to reconstruct 

an oxygen isotope record representative of the fluctuations in global mean sea level (and 

so, by approximation, in global ice volume).  

 

Fig. 3 shows the sea-level reconstruction of Labeyrie et al. [1987]. These authors argued 

that the temperature of glacial deep water in the Norwegian Sea was relatively constant 

throughout the glacial cycle (including interglacial periods) because temperatures there 

are currently close to the freezing point of water there. Unfortunately there were sections 

with few or no foraminifera in the Norwegian Sea cores. The deep Pacific was relatively 

stable with respect to water mass and temperature fluctuations (i.e. temperatures 

approached freezing point) only during the glacial periods. Thus, an argument was 

constructed that the two study areas suffered only minimal temperature fluctuations 

during different periods, when isotope records would primarily reflect ice-volume 

variations. In order to minimise temperature effects through the glacial cycle and provide 

a complete record through the glacial cycle Norwegian Sea cores were used to 

reconstruct interglacial variations and equatorial Pacific core V19-30 was used to 

reconstruct glacial variations. 
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Chappell and Shackleton [1986] and Shackleton [1987] also used the benthic oxygen 

isotope record of equatorial Pacific core V19-30, but combined it with sea-level estimates 

from fossil coral terraces on Huon Peninsula (Fig. 3, see also sections 3.1 and 5.3). They 

found that a simple linear scaling of the V19-30 benthic oxygen isotope record between a 

modern interglacial sea level of 0m and a full glacial sea level at -120m failed to explain 

the magnitude of variability found in the Huon Peninsula record. However, if a 2oC 

cooling of the deep ocean during glacial periods was assumed, relative to interglacial 

periods, then the two sets of data could be aligned. A reconstruction of deep ocean 

temperature based on a comparison between stable oxygen isotope measurements of pore 

waters and benthic foraminifera from deep sea cores has confirmed that the glacial deep 

ocean was indeed a couple of degrees cooler than today [Adkins et al., 2002]. 
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Fig. 3 also shows another important benthic foraminiferal oxygen isotope record, namely 

that of core TN057-21 from 4981 m water depth in the Cape Basin (South East Atlantic) 

[Ninneman et al., 1999]. The site of TN057-21 is bathed in Antarctic Bottom Water 

(AABW), which originates in the Weddell Sea near to the freezing point of sea water. If 

this was also the case in the past, then the water temperature at this site may have been 

relatively stable during MIS 3, in which case the isotope record would reflect a relatively 

unbiased form of the ice-volume effect. This is why we include this record here. We 

consider that temperature bias may not be fully excluded due to an element of 

Circumpolar Deep Water / lower NADW entrainment in the AABW that bathes the core 

site. Indeed the glacial to interglacial change in the oxygen isotope record is 1.7 ‰, 

greater than the range of 0.7 to 1.3 ‰ that can be attributed to the glacial to interglacial 

ice-volume component [Adkins et al., 2002]. This would suggest that there indeed are 

additional factors such as deep-ocean mixing affecting the TN057-21 benthic isotope 

record. Unfortunately this record does not fully resolve the MIS 3 sea-level variability. It 

nevertheless points to the importance of taking more benthic oxygen isotope records in 

the Southern Ocean in the future. 

 

Two key high-resolution benthic foraminiferal oxygen isotope records are particularly 

important to understanding MIS 3 sea-level variability (Fig. 3). The first is that of core 
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MD95-2042 from 3142m depth on the Iberian margin (NE Atlantic) [Shackleton et al., 

2000]. As mentioned before, the isotope records for this core have offered direct and 

unambiguous insight into the phase relationship between the surface-water planktic (D-O 

style) variability, and the deep-sea benthic (AA style) variability at this site, which may 

offer the best available chronological control on the timing of deep-sea stable oxygen 

isotope fluctuations in North Atlantic deep waters. The other key record is that of core 

MD97-2120 from 1210m depth on Chatham Rise (SW Pacific) [Pahnke et al., 2003; 

2005]. Despite the recovery from almost antipodal sites at vastly different depths in 

completely different ocean basins with entirely different water-mass structures, and from 

entirely different water-masses (lower North Atlantic Deep Water/Antarctic Bottom 

Water (NADW/AABW) boundary and lower Antarctic Intermediate Water (AAIW), 

respectively), the benthic foraminiferal oxygen isotope records of MD95-2042 and 

MD97-2120 display extremely similar signals, although a phase shift of several kyr 

between these two records can not be excluded [Skinner and Shackleton, 2005]. 

Displayed in Fig. 3 using the same scaling as applied to the other benthic stable oxygen 

isotope records, this structure displays four fluctuations equivalent to 20 to 40 m sea-level 

magnitude within MIS 3.  
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Finally, we consider so-called ‘stacked’ benthic foraminiferal oxygen isotope records, 

which are statistical compilations of several (to many) individual records. These records 

are shown in Fig. 4, and are of interest because the stacking procedure should help to 

filter out more local hydrographic variability in favour of the underlying general (global) 

changes. Martinson et al. [1987] presented the first widely used (SPECMAP) stack of 

benthic isotope records, based on benthic records from around the globe on time scales 

that were synchronised by tuning to the orbital insolation record. Huybers and Wunsch 

[2005] create their independent benthic stack based on the leading EOF of five benthic 

records on an age model that assumes a constant sedimentation rate over the last 17 

glacial cycles. Note that four of these five records are from the Atlantic and so this stack 

may be biased towards the larger responses found in this basin [e.g. Waelbroeck et al., 

2002]. Lisiecki and Raymo [2005] created a stack of 57 globally distributed benthic 

records, which were synchronised using a graphic correlation technique.  
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Figs. 3 and 4 and Table 1 allow comparison of all the aforementioned benthic records, 

which we have scaled to sea level using the procedure outlined above. The horizontal 

black lines in the plots lie at the same sea level on each curve (-60 m and -80 m) to 

facilitate visual inspection of the records and will be used throughout the paper*. On 

studying the plots in Figs. 3 and 4, common stratigraphic characteristics of the underlying 

MIS 3 sea-level record immediately emerge. MIS 3 is sandwiched between periods of 

generally lower sea level (MIS 4 and MIS 2). Following MIS 4 (~-80 to -90m), the 

records show a sea-level rise of 20-40 m into MIS 3. Next, sea level is seen to stand 

approximately 20 m higher during the first half of MIS 3 (~-60 m) than during the later 

part (~-80 m). Possibly, the higher sea level during the first part of MIS 3 is a response to 

the increased summer insolation at 65oN during that time (Figs. 3,4), but an alternative 

explanation will be discussed in Section 6.5. Following MIS 3, sea level falls to -120 or -

135 m during MIS 2 [Fairbanks, 1989; Rohling et al., 1998; Yokoyama et al., 2000; 

Peltier and Fairbanks, 2006]. These stratigraphic characteristics are common to MIS 3 

sea-level reconstructions from many different techniques, as shown by the various 

records collected in this paper. 

 

Fig. 3 allows a first evaluation of any signs of millennial variability in the individual 

records, and it is immediately evident that all records do contain some signal structure 

within MIS 3. The record of Shackleton [1987] does not clearly resolve this variability, 

but may contain 4 or 5 fluctuations of the order of 20 m magnitude. The Labeyrie et al. 

[1987] record contains four fluctuations of between 20 and 30 m magnitude. The 

Ninneman et al. [1999] Southern Ocean record is noisy but the noise has an magnitude of 

 
* visual inspection is used to establish sea-level estimates from the records throughout 

this paper. The maxima and minima of a single fluctuation are defined by at least three 

points for oxygen isotope based records and by single coral estimates. The black lines are 

spaced at 20 m intervals so that fluctuations in the range of  20 – 40 m are easy to read 

off the plots without over-interpreting the records. If the magnitude of the variability is 

cited as a range, then this refers to the range of multiple fluctuations.  
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10 to 30 m (i.e. a similar magnitude to the other benthic isotope estimates). Both the 

records of Shackleton et al. [2000] and Pahnke et al. [2004] clearly resolve four 

fluctuations of between 20 and 40 m magnitude, which are stratigraphically very similar 

to each other. 

 

Stacked benthic oxygen isotope records may to some extent remove the hydrographic 

variations that could distort any individual sea-level record from a single core. None of 

the stacked records reproduced in Fig. 4 has considered millennial-scale variability 

during synchronisation of the individual contributing records, so that the stacked records 

may be expected to represent any millennial-scale variability in a smoothed manner 

(except perhaps the Lisiecki and Raymo [2005] record, see below), or indeed to remove it 

if the records stack the sea-level fluctuations ‘out of phase’. Despite this statistical 

smoothing effect, all stacked records show distinct variability within MIS 3. The 

Martinson et al. [1987] stack shows two major fluctuations in the early part of MIS 3 of 

between 10 and 30 m magnitude, while the Huybers and Wunsch [2005] record picks out 

3 fluctuations with magnitudes of approximately 30 m. However, we do have some 

reservations about the Huybers and Wunsch [2005] record on these short time scales, 

because the stacking method used has removed any obvious signal of the MIS 4 lowstand 

(possibly because the records have been stacked ‘out of phase’ during this period). Given 

that the Lisieki and Raymo [2005] stack was constructed using a graphic correlation tool 

to synchronise the individual records, it may be the most likely to retain a relatively 

unsmoothed representation of any millennial-scale variability. Within MIS 3, this record 

shows four fluctuations with magnitudes between 10 and 30 m. 

 

2.3 Planktic foraminiferal oxygen isotope records 

Fig. 5 shows a high-resolution planktic oxygen isotope record from the Sulu Sea in the 

equatorial Pacific [Linsley et al., 1996]. The Sulu Sea is a relatively isolated region in the 

western equatorial Pacific, characterised by a net input of freshwater due to high runoff 

from SE Asia and nearby islands, which may considerably affect oxygen isotope ratios in 

the surface waters. To some extent, the impact of the Sulu Sea’s freshwater balance on its 
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surface water oxygen isotope ratios is related to sea-level-modulated changes in the 

exchange of water in the basin with the open ocean through the connecting straits, but 

(given the large catchment area) changes in the actual balance between evaporation and 

precipitation/runoff are also likely to be significant. 

 

The Sulu Sea record reveals glacial to interglacial oxygen isotope variations of a similar 

order (~1.2 ‰) to that anticipated for the global mean [Linsley et al., 1996]. Initially, it 

was therefore interpreted directly in terms of ice-volume variations [Linsley et al., 1996]. 

More recent work involving Sulu Sea records, using Mg/Ca-based temperature estimates, 

has endeavoured to remove the influence of any temperature fluctuations to derive 

records of the oxygen isotope ratio of the water mass in which the foraminiferal tests had 

formed [Dannenmann et al., 2003], and to thus reveal the ice volume effect and any 

superimposed local hydrographic and freshwater budget effects. Fig. 5 compares the 

Linsley et al. [1996] and Dannenmann et al. [2003] records for the Sulu Sea. Both 

contain a good deal of noise, which likely reflects variations in evaporation, and 

precipitation/runoff from the catchment areas that drain into the basin (i.e. local 

hydrological influences). Underlying the noise, the records show generally lighter isotope 

ratios, perhaps relating to higher sea level, during the early part of MIS 3 than during the 

later stages of MIS 3. The 5-point Gaussian-smoothed record of Dannenmann et al. 

[2003] suggests 4 or 5 millennial-scale fluctuations within MIS 3 that would be 

equivalent to sea-level changes of 20 to 40 m magnitude.  

 

Lea et al. [2002] investigated core TR163-19 from Cocos Ridge, north of the Galapagos 

Islands in the eastern equatorial Pacific, and used Mg/Ca measurements to remove 

temperature effects from their record. The resulting record of surface water oxygen 

isotope ratios is shown in Fig. 5. Lea et al. [2002] noted that this record displays some 

similarity to the benthic foraminiferal oxygen isotope record of Labeyrie et al., [1987] 

(Fig. 3); both suggest four sea-level fluctuations of 20 to 30 m magnitude and include a 

peak in sea level at the end of MIS 3. 
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2.4 The Red Sea residence-time method  465 
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Oxygen isotope ratios in the Red Sea are highly sensitive to changes in sea level and give 

an additional means to derive sea-level estimates during MIS 3. We discuss this approach 

below. 

 

The Red Sea is subject to strong net evaporation. Evaporation strongly enhances oxygen 

isotope ratios in marginal basins that are restricted from the open ocean by a small strait 

with a shallow sill, such as the Red Sea (and the Mediterranean [Rohling, 1999]), because 

enhancement of oxygen isotope ratios in the basin is linked not only to the rate of 

evaporation, but also to the refreshment rate of water in the basin by exchange over the 

sill (the residence time of water in the basin). The longer the residence time, the longer 

the water is exposed to the high evaporation rates, and the heavier the isotope ratio 

becomes due to preferential removal of the lighter 16O isotope by evaporation.  

 

The Red Sea is separated from the open ocean by the Hanish Sill, which is only 137 m 

deep [Werner and Lange, 1975; Rohling et al., 1998; Fenton et al., 2000; Siddall et al., 

2002; 2003; 2004], which is not much deeper than the depth of a full glacial lowstand 

[Fairbanks, 1989; Peltier and Fairbanks, 2006]. Modelling results indicate that glacio-

isostatic effects on the sill may lower the sill position by a maximum of 17 m during 

periods of glacial maxima [Siddall et al., 2004]. As noted by Rohling et al. [1998] and 

Siddall et al. [2003; 2004], there likely is a gradual (very small) sill uplift. This very 

limited sill uplift means that the sill has remained submerged during at least the last 

500,000 years, even in the most extreme glacial lowstands [Rohling et al., 1998; Siddall 

et al., 2003; 2004; Fernandes et al., 2006]. Bathymetric data show that the sill passage 

narrows from 110 km at modern sea level to around 6 km at –120 m. This reduction of 

the width of the sill passage with depth causes an exponential decrease in the sill passage 

area over almost three orders of magnitude by full glacial sea-level lowering, which in 

turn means that (even today) the restricted exchange of waters between the Red Sea and 

the open ocean is extremely sensitive to sea level. This strong reduction of cross-sectional 

area with respect to sea level is illustrated in Fig. 6.  
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In summary, the enhancement of oxygen isotope ratios by evaporation and the great 

sensitivity of this enhancement to exchange over the sill (which critically depends on sea 

level as the first-order cause of change in the area of the sill passage, Fig. 6) strongly 

links Red Sea oxygen isotope ratios with sea level. This strong linkage is best 

exemplified by the fact that the full glacial-interglacial range of change in stable oxygen 

isotope ratios is 5.5 to 6‰, versus roughly 1 to 1.2 ‰ in the open ocean [Thunell et al., 

1988; Hemleben et al., 1996; Rohling et al., 1998; Fenton et al., 2000; Siddall et al., 

2003; Arz et al., 2003a]. 

 

The residence time effect in the Red Sea also affects salinity in the basin – in fact, this 

salinity effect was studied before the accompanying impact on the oxygen isotopes. It 

was found that the times of full glacial sea-level lowstands were characterised by 

hypersaline conditions in the Red Sea, which caused development of chemical 

precipitates, benthic foraminiferal faunas indicative of very high salinities, and aplanktic 

zones [e.g., Milliman et al., 1969; Deuser et al., 1976; Ivanova, 1985; Winter et al., 1983; 

Reiss et al., 1980; Locke and Thunell, 1988; Thunell et al., 1988; Almogi-Labin et al., 

1991; Rohling, 1994; Hemleben et al., 1996; Rohling et al., 1998; Fenton et al., 2000]. 

Aplanktic zones are intervals during which basin salinities in excess of 49 PSU caused 

wide-spread (local) extinction of planktic foraminifera, when sea level stood below about 

-100 m [for an overview, see Fenton et al., 2000]. Rohling et al. [1998] used such 

evidence of species diversity from the central Red Sea with a crude hydraulic control 

approximation for water exchange across the sill, to estimate the magnitudes of sea-level 

lowstands during the last five glacial maxima (MIS 2, 6, 8, 10, and 12). An improved and 

expanded version of this approach realised the potential of Red Sea oxygen isotope data 

to quantify continuous records of sea-level change [Siddall et al., 2003; 2004; 2006b]. 

 

Siddall et al. [2003] combined a three-layer hydraulic model to calculate water-mass 

exchange at the sill [Siddall et al., 2002] with a model of oxygen isotope fractionation in 

an evaporative basin developed for the Mediterranean [Rohling, 1999]. By varying the 

sill depth in the model and assuming a 5oC temperature drop at the LGM, a relationship 

was calculated between sea level and oxygen isotope ratios in the central Red Sea (for 
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both water and calcite) [Siddall et al., 2003; 2004]. This relationship was then used to 

calculate sea-level fluctuations from Red Sea oxygen isotope records to within ± 12 m 

(2σ). This uncertainty margin accounts for meteorological variables by taking modern 

annual maximum and minimum values as the annual average values: a temperature 

uncertainty is allowed of ± 2oC; evaporation uncertainties allow for a range from 1.4 to 

2.8 m yr-1 and; relative humidity is allowed to vary between 60 and 80%.  
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This method was developed for planktic foraminiferal records [Siddall et al. 2003; 2004], 

because the long sea-water residence times in the Red Sea at times of low sea levels 

would cause a long time-integration in benthic records. Benthic records would therefore 

be expected to show a residence-time based smoothing of any sea-level variability, with 

concomitant artificial reduction in the magnitudes of short-lived events. Siddall et al. 

[2004] also demonstrated that the central Red Sea is the most suitable region for the 

technique. In the South, near the sill, the intrusion of a cold layer of Gulf of Aden 

Intermediate Water during the summer months complicates use of oxygen-isotope 

records. In the North, precipitation originating from the Mediterranean region during the 

Holocene complicates the interpretation of oxygen isotope records [e.g., Fenton et al., 

2000; Arz et al., 2003b]. 

 

Recently, Arz et al. [2007] derived a sea-level record from benthic oxygen isotopes from 

the northern Red Sea. These authors used temperature estimates from coccolithophore-

based long-chain alkenone unsaturation ratios in order to estimate the sea-surface 

temperature record for their core. They then used this temperature record to remove the 

temperature component from their downcore benthic foraminiferal oxygen isotope 

record, and thus estimate oxygen isotope changes in the sea water through MIS 3. This 

oxygen isotope record for water was subsequently empirically scaled to sea level using 

coral-based sea-level estimates. The authors then discussed both the directly measured 

foraminiferal oxygen isotope record and the inferred sea-water oxygen isotope record. By 

using benthic records Arz et al. [2007] avoided gaps in their record during aplanktic 

periods but, as noted above, benthic isotopes in the basin may respond less quickly to 

varying sea level than the planktic record and may therefore smooth the record of rapid 
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variations in sea level. In addition, the Arz et al. [2007] reconstruction was smoothed 

using a 5-point running mean. 
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Because the underlying sea-level forcing is the same for the Siddall et al. [2003] and two 

Arz et al. [2007] records, strong similarities should be expected (Figs. 7 and 8). Indeed, 

this expectation is borne out, despite the different regional origins, the different 

approaches followed in calibration, and the different chronologies. Fig. 8 plots all three 

records after transformation to a common (arbitrary) age scale in order to better consider 

the record of sea-level variability in the reconstructions (see Fig.8 caption for details of 

the age scale). All three demonstrate generally higher sea level during early MIS 3, and 

lower sea level during late MIS 3. All three records include 4 major sea-level fluctuations 

within MIS 3, with magnitudes between 20 and 30 m.  

 

Removing the temperature signal from the Arz et al. [2007] record has very little impact 

on the resulting sea-level reconstruction (Fig. 8). This observation corroborates the 

assumption made by Siddall et al. [2003] that temperature effects have little impact on 

Red Sea oxygen isotope derived sea-level, which increases confidence in the Red Sea 

residence-time method for sea-level reconstruction.  

 

2.5 Oxygen isotope ratios of air in bubbles trapped in the Vostok ice core 

Shackleton [2000] re-examined the benthic isotope record from equatorial Pacific core 

V19-30. He assumed an orbitally tuned time scale for both V19-30 and the oxygen 

isotope ratio of air from bubbles trapped in the Antarctic Vostok ice core. By relying on 

assumptions about the Dole effect and deep-water temperatures, this combination of 

records allowed him to generate a record of global ice-volume/sea-level variations. The 

assumed chronologies for the Vostok ice-core records and core V19-30 have a significant 

impact on the outcome of this method Shackleton’s [2000] revised chronology for the 

Vostok age scale differs substantially from published age scales, which leads to large 

disparities in the calculated differences between the ages of ice and trapped (bubbles) 
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gasses in the ice core [Masson-Delmotte et al. 2004]. Nevertheless, we include the record 

here for purposes of comparison and completeness (Fig. 7).   
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The Shackleton [2000] sea-level reconstruction shows some broad similarities with other 

records included in this paper (Fig. 7). It includes four sea-level fluctuations of 30 to 40 

m magnitude within MIS 3, and in general the highest sea levels are recorded at the start 

of MIS 3. 

 

3. Discontinuous Records 

There are many types of discontinuous records of sea level during MIS 3, and we discuss 

them within three broad classes: (1) fossil corals – the main source of well-dated sea-

level markers; (2) other markers of (drowned) coastal surfaces; and (3) sediment 

stratigraphy on continental shelves. 

 

3.1 Fossil coral reefs 

Fossil coral reef data have played a pivotal role in developing our understanding of MIS 

3 sea-level changes, because fossil corals provide material suitable for absolute age 

dating [Chappell and Shackleton 1986; Thompson and Goldstein 2005; 2006]. This 

contrasts with downcore sediment records, which depend on less reliable techniques such 

as orbital tuning [Imbrie et al. 1984], comparison to ice-core data [Siddall et al. 2003], or 

comparison to magnetic paleo-intensity records [Arz et al. 2007]. Certain coral terrace 

formations such as those on Huon Peninsula in Papua New Guinea in addition provide a 

stratigraphic framework, with each of the major sea-level fluctuations characterized by a 

distinct terrace that can be dated [Chappell and Shackleton 1986; Chappell 2002]. 

Further discussion of the evidence for sea-level fluctuations from Huon Peninsula is 

given in Section 5.3.  

 

In the absence of a detailed and sequential stratigraphic context (such as that of Huon 

Peninsula), other uplifted fossil coral reefs yield discontinuous records of sea level 

change that rely heavily on dating techniques to reveal the actual sequence of events 
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[Gallup et al., 1994; Stirling et al., 1998]. Uncertainty in dating techniques regarding 

coral samples results in uncertainty in the inferred sea levels, because the accuracy of 

uplift corrections depends on the accuracy of age constraints. Further uncertainties result 

if reefs are sensitive to the effects of glacio-isostatic rebound [e.g. Lambeck et al. 2002]. 
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Section 5.3 offers a detailed comparison of the estimated ages of sea-level changes in the 

coral-based records of Chappell [2002] and Thompson and Goldstein [2005; 2006] . 

 

3.2 Other coastal features 

Hanebuth et al. [2006] used Red River delta and Sunda Shelf deposits to make a tentative 

sea-level estimate for MIS 3 that falls between 60 and 90 m below modern sea level, 

which compares well with the estimates presented here. To date, there has been little 

application of this method to sea-level variations within MIS 3 on millennial time scales. 

We note that this technique is likely to be vulnerable to the ‘broad shelf effect’, when 

hydro-isostatic loading across the shelf due to sea-level change has an important impact 

on the local, relative sea-level change [e.g. Bloom 1967; Johnston 1993; Milne et al. 

1999; Hanebuth, 2006]. In addition, this method requires dating that almost invariably 

relies on the radiocarbon technique which is not very useful for events predating 40 ka. 

Even for the youngest part of MIS 3, radiocarbon dating carries large uncertainties due to 

unknown reservoir age corrections and poorly understood calibration between 

radiocarbon years and calendar years [e.g. Fairbanks et al., 2005; Reimer et al., 2006].  

 

3.3 Sediment stratigraphy 

Variations in the sedimentary architecture of the continental shelf and slope have been 

used to derive sea-level records in deeper geological time [Haq et al., 1987; Miller et al., 

2005]. The technique is currently being developed for application to MIS 3. Sediment 

sequences on the shelf/slope of the Gulf of Lions in the Mediterranean demonstrate 

potential links to sea-level fluctuations within MIS 3 [Jouet et al., 2006]. Multiple 

applications of these techniques, carefully calibrated with datings of the surfaces based 

on sediment cores, may eventually result in additional control on the record of sea-level 
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variability within MIS 3. Uncertainties of this technique relate to the accurate description 

of sedimentary architecture, the accurate assignment of appropriate depths to that 

architecture and accurate corrections for isostatic effects. Isostatic effects may be due to 

the broad-shelf effect or fluctuations in large ice sheets [Bloom 1967; Johnston 1993; 

Milne et al. 1999].  

 

4. Combined approaches 

4.1 Scaled oxygen isotopes 

Cutler et al. [2003] followed the approach pioneered by Shackleton [1987], in which sea-

level records are generated through careful scaling of benthic oxygen isotope records 

using fossil coral data (Fig. 7). Cutler et al. [2003] applied rigorous selection criteria to 

new and previously published U/Th dates to generate a set of coral-based age versus sea-

level estimates that was subsequently used to provide a sea-level scaling for the benthic 

isotope record of equatorial Pacific core V19-30. This revealed that, during glacial 

periods, the slope of sea level to oxygen isotope variation in core V19-30 is close to 0.01 

‰ m-1, as expected for the global mean value [Adkins et al., 2002], while the benthic 

oxygen isotope values carry an important temperature-related overprint during 

interglacial periods related to deep-ocean warming [Cutler et al., 2003]. Given the 

similarity of this temperature overprint in both Atlantic and Pacific cores during 

interglacial periods [Cutler et al., 2003], it would seem that it may well be of a global 

nature. No confidence intervals were given for the regression against benthic oxygen 

isotopes, but the reported confidence intervals for the fossil coral indicators are shown in 

Fig.7. 

 

Waelbroeck et al. [2002] performed a regression analysis between benthic isotope records 

and sea-level estimates derived from fossil coral data. This regression found that the 

relation between benthic oxygen-isotope values and sea level differed during glacial 

phases as compared to deglacial phases, likely in response to differences in evolution of 

deep-ocean temperature, hydrography, and other factors influencing the benthic isotope 

records during these times. The section of their record that is of interest to the present 
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study consists of the Pacific record from core V19-30 prior to 38 ka BP and the Atlantic 

record from core NA87-22 for the interval younger than 38 ka BP. Because their 

published sea-level reconstruction includes a 7-point running mean that is likely to 

underestimate any short-term (millennial-scale) variability, we include both the filtered 

and unfiltered versions of this reconstruction in Fig. 7. The uncertainty due to the 

regression of benthic oxygen isotopes and coral data is larger or equal to ±13 m. 

 

The Waelbroeck et al. [2002] record shows three clear fluctuations of around 10-30 m 

magnitude, with the highest sea levels at the start of MIS 3. The Cutler et al. [2003] 

record also contains distinct sea-level fluctuations, which amount to 30 m or more in 

magnitude. It shows at least three such millennial-scale sea-level fluctuations within MIS 

3, but more cannot be excluded given the gaps in the record. Both these analyses find 

limited temperature effects in the deep Pacific during glacial times, but substantial 

temperature changes between glacial and interglacial periods. This corroborates the 

previous suggestion by Shackleton [1987] and the inferences made from pore-water 

oxygen isotope values for the last glacial maximum by Adkins et al. [2002] and Adkins 

and Schrag [2003] that there were only limited temperature effects on benthic oxygen 

isotope fluctuations in the deep Pacific during glacials, relative to interglacials. 

 

5. Timing and synchronisation 

The discussion about absolute versus relative timing of the MIS 3 sea level variability is 

marred by many complications and uncertainties. Especially the uncertainty that applies 

to the absolute timing of Greenland ice-core temperature records imposes important 

limitations on the development of absolute age control for the various sea-level records 

(Fig. 9). In the following section and in Figs. 9 to 13 we consider these issues. 

 

5.1 Synchronisation and nature of the benthic foraminiferal oxygen isotope record 

As noted in the introduction, the first independent evidence for the possible phasing 

between D-O variability and sea level variations during MIS 3 came from core MD95-

2042 (3142 m) from the Portuguese margin [Shackleton et al., 2000] (Fig. 1). The 
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(surface-water) planktic foraminiferal stable oxygen isotope record of this core shows D-

O variability that is strongly reminiscent of that found in Greenland ice cores. Co-

registered (in the same samples) with this D-O variability in the planktic record, the 

benthic foraminiferal stable oxygen isotope record displays variability that is remarkably 

similar to Antarctic climate fluctuations. Shackleton et al. [2000] observed that the 

planktic and benthic records show virtually the same phasing between the two types of 

variability as the methane-synchronised ice core records from Greenland and Antarctica 

[Blunier et al., 1998; 2001].  

 

Assuming that North Atlantic deep water temperature changes did not affect the timing of 

MD95-2042 benthic oxygen signal, the MD95-2042 records might simply suggest that 

the planktic oxygen isotope records reflects northern hemisphere climate variability, 

while the benthic oxygen isotopes reveal the phasing of the sea-level variability relative 

to that northern hemisphere climate record. This indeed was the original interpretation 

proposed by Shackleton et al. [2000], who stated: ‘We suggest that the benthic δ18O 

record provides evidence of changes in continental ice volume; during stadials when the 

surface of the North Atlantic was very cold, the surrounding ice sheets were starved of 

precipitation, and they declined in volume, whereas during the interstadials when the 

surface was warm, increased precipitation caused these ice sheets to grow. This 

hypothesis explains the phasing of the benthic  δ18O record as well as its character and is 

also consistent with the observation that the largest amplitude events in the δ18O record 

are associated with the surface temperature events with the longest duration (in the 

Greenland record, all events have about the same amplitude but the durations vary).’ We 

note that later studies have confirmed that the magnitude of Antarctic warming events are 

proportional to the duration of cold events in Greenland [Stocker and Johnsen 2003; 

Siddall et al. 2006; EPICA Community Members 2006]. However, there are indications 

that changes in benthic oxygen isotope records may have different timings from one 

ocean to another [Skinner and Shackleton, 2005; Labeyrie et al., 2005], and from one 

depth range to another depth range within the same ocean [Labeyrie et al., 2005; 

Waelbroeck et al., 2006], due to hydrographic variation between and within ocean basins.  
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Atlantic benthic oxygen isotope records may be sensitive to past variability in the 

complicated hydrography of that region. Today, the contrast between the (water) oxygen 

isotope ratio of pure NADW and pure AABW is of the order of 0.4‰. Note that, because 

NADW is today 2.5 to 3.5 ºC warmer than AABW (equivalent to -0.6 to -0.9‰ in its 

effect on the isotope composition of calcite), calcite formed in pure NADW will be 0.2 to 

0.5‰ lighter than that formed in pure AABW within the North Atlantic. At the LGM, all 

deep-water masses may have been close to (surface) freezing temperatures [Adkins et al., 

2002; Adkins and Shrag 2003], which would negate any temperature effects associated 

with water-mass switching.  Mg/Ca and 13C data from core MD01-2444K, however, 

suggest that hydrographic changes and attendant temperature variability may have 

affected the depth range of NADW during MIS 3 [Skinner and Elderfield 2007; Skinner 

et al. 2007]. Water-mass switching might therefore explain why the oxygen isotope 

variations in the benthic record of MD95-2042 are larger than expected from variations in 

sea level of 10 to 30 m during this period. The question that emerges is “What might be 

the relative contributions to the benthic oxygen isotope fluctuations during MIS 3 from 

sea-level and hydrographic change?” 

 

Several lines of evidence for sea-level change during MIS 3 of 10 to 30 m magnitude are 

discussed in this text. This evidence would suggest that the oxygen isotope records of the 

Portuguese margin cores includes information regarding sea-level change that can explain 

between 50 and 100 % of the observed signal, with some superimposed ‘masking’ of that 

signal by the impacts of hydrographic changes. We note that today (during a well-

developed interglacial), the 3146 m deep site of MD95-2042 is considerably influenced 

by AABW – the site resides just below the transition between NADW and AABW at 

3000 m. During glacial times, the water-mass transition appears to have resided shallower 

than today, at 2000 to 2500m [Duplessy, 2004; Sarnthein et al., 2003; Curry and Oppo, 

2005]. Hence, the benthic oxygen isotope record of MD95-2042 is likely to have been 

more strongly dominated by AABW at glacial times than today, which would reduce the 

potential of impacts from any water-mass switching.  
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The discussion presented here makes it very clear that the relationship between 

temperature, ice volume and complex hydrographic effects creates complications for the 

interpretation of benthic oxygen isotope records on the Iberian Margin which will require 

additional benthic oxygen-isotope records, Mg/Ca analyses and careful efforts to 

synchronise records. The existing Mg/Ca temperature record from core MD01-2444K 

shows fluctuations that do not distort the phasing of the benthic isotope record if the 

temperature component is removed [Skinner et al. 2007] and so we show the original 

oxygen isotope here. However, this does not allow for the complications of local 

hydrography and so the resulting synchronisation can only be taken as a loose indication 

of the relative timing of sea-level fluctuations with respect to temperature fluctuations in 

the Greenland ice core records. 

 

Pahnke et al. [2003; 2005] investigated core MD97-2120 from 1210 m depth in the SW 

Pacific (a site bathed in lower AAIW), and found a benthic oxygen isotope record with a 

stratigraphic structure and magnitude variability that is extremely similar to that of NE 

Atlantic core MD95-2042 (bathed in AABW with possibly some lower NADW). These 

arguments would imply that a large component of the signal reflects an ice-volume/sea-

level effect, although a considerable overprint of widespread deep-sea temperature 

fluctuations remains possible, which should be resolved with dedicated proxies.  

 

5.2 Synchronisation of sea-level records from the Red Sea method 

The (relative) chronology of the Red Sea sea-level records is another focus of much 

research. The original Red Sea-based sea-level record was assigned a chronology initially 

on the basis of strong signal similarity with the Antarctic Byrd ice-core record, and 

subsequently by correlation with the benthic stable isotope record (synchronised to 

Greenland via the study of Shackleton et al. [2000]) [Siddall et al., 2003]. Arz et al. 

[2007] published a record from the northern Red Sea that was dated using radiocarbon 

data and by means of correlation of the magnetic palaeointensity record of their core 

GeoB 5844-2 to the global palaeointensity stack [Laj et al., 2000]. A specifically 

important interval recognised in the magnetic palaeointensity record is the so-called 
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Lachamp intensity minimum. Because this event is expressed in the 10Be record of 

Greenland ice cores, within DO interstadial 10 [Muscheler et al., 2005], it should offer a 

sound chronological correlation marker relative to the Greenland climate records. This 

synchronised record is shown in Fig. 10. 
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The palaeomagnetic intensity-guided chronological control of Arz et al. [2007] presents a 

significant advance in establishing the phase relationship between the MIS 3 chronology 

of Red Sea sea-level records and the Greenland (and Antarctic) climate variabilities. This 

is particularly the case with the Laschamp event, since it was found close to a prominent 

MIS 3 sea-level fluctuation [Arz et al., 2007]. However, it has been well established 

[Roberts and Winkelhofer, 2004] that magnetic field parameters should be used with 

great care when measured in cores of low accumulation rate, such as the 7.5 cm kyr-1 of 

the northern Red Sea core. This is because the lag involved in the ‘lock in’ of such 

parameters causes similar age offsets between the sediment age and the palaeointensity 

signal’s age as is seen in ice cores between the ice age and the age of gasses trapped in 

bubbles within the ice. Due to the lock-in effect, an intensity event will be recorded at a 

position that is offset downwards in the sedimentary sequence relative to its age-

equivalent sediment, where the offset reflects the lock-in depth. Lock-in depths typically 

range between about 5 and 15 cm [Roberts and Winkelhofer, 2004]. Hence, the use of 

magnetic palaeointensity events to synchronise the Red Sea sea-level record to Greenland 

ice core records may result in a systematic offset toward younger ages relative to 

Greenland, by an amount equivalent to the age equivalent of the lock-in depth. In the 

northern Red Sea core, with an accumulation rate of 7.5 cm kyr-1, this offset may amount 

to 650 to 2000 years (using a lock-in depth between about 5 and 15 cm).  Indeed an age 

offset of 2000 years may explain the difference between the timing of the Shackleton et 

al. [2000] and Arz et al. [2007] records (Fig. 10). 

 

Further advances in establishing the temporal relationship between the Red Sea sea-level 

records and the D-O and AA-style climate rhythms may be expected from detailed multi-

proxy investigation of Red Sea sediment cores to distinguish co-registered records, within 

one set of samples, of planktic foraminiferal stable oxygen isotope (sea-level) variations 
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and local environmental variability. The testable hypothesis would be that the latter – 

especially wind-blown dust flux data – will reveal a distinct DO-style signal, since this is 

the predominant rhythm of climate variability in the Indian/Asian monsoon region 

[Schulz et al., 1998; Sirocko, 2003; Burns et al., 2003; Wang et al., 2001]. Such a multi-

proxy study would, therefore, result in unambiguous, co-registered recording of the phase 

relationship between the DO-style fluctuations and the sea-level record. 

 

5.3 Absolute timing 

Determining the absolute timing of D-O events remains a challenge. There are several 

Greenland ice-core time scales, based primarily on layer counting and/or glacial 

modelling [e.g. Johnsen et al., 2001; Johnsen et al., 1995; Meese et al., 1997; Shackleton 

et al., 2004; Rasmussen et al., 2006; Andersen et al. 2006; Svensson et al. 2006] (Fig. 9). 

Here we discuss these age models in the context of MIS 3. The SFCP time scale (during 

MIS 3) is synchronised to the Hulu Cave record at the start of MIS 3 and to the ss09sea 

time scale [Johnsen et al., 2001] for Greenland ice cores [Shackleton et al., 2004] at the 

end of MIS 3. Shackleton et al. [2004] note that offsets of several hundred years remain 

between the Hulu Cave and ss09sea time scales during the early part of MIS 3. 

 

Given that the chronologies of the various Greenland ice cores are continuously being 

improved, no time scale can yet be taken as definitive. Although we proceed with 

comparisons between sea-level reconstructions and ice-core records on the Hulu/SFCP 

time scale, it is interesting to note that the new multi-proxy layer-counted GICC05 

timescale (reaching 40 ka) for the Dye3, GRIP and NGRIP ice cores [Rasmussen et al., 

2006; Vinthner et al. 2006] shows reasonable agreement with the GISP2 timescale that 

was also layer counted down to at least 40 ka [Meese et al., 1997]. These timescales have 

been compared in detail by Andersen et al. [2006] and Svensson et al. [2006]. Here we 

show the high resolution GISP2 record of Stuiver and Grootes [2000]. We note that the 

SFCP timescale [Shackleton, 2004] shows considerably bigger offsets from the GISP2 

timescale for the period 40-80 ka. The SFCP timescale was developed for the GRIP ice-

core record [Shackleton, 2004] and so we will refer to the GRIP ice core record in Figs. 
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10 to 13. We encourage readers to refer back to Fig. 9 for an illustration of the overall 

uncertainties in the absolute dating of MIS 3 climate variability. 

 

How can we place absolute dates on sea-level fluctuations during MIS 3? Huon Peninsula 

in Papua New Guinea consists of an uplifted set of terraces that records past sea-level 

fluctuations. Importantly, the section of the coastal zone corresponding to MIS 3 

comprises several such terraces – which likely formed as a result of sea-level variations 

within MIS 3. Chappell [2002] used a combination of U/Th dated (alpha-counting and 

TIMS) coral terraces, river sediment deposits, and a simple model of coral terrace 

formation on an uplifting coast to derive a sea-level curve for Huon Peninula through 

MIS 3. This comprehensive approach combines a detailed stratigraphic understanding of 

the entire Huon terrace formation and careful dating controls to develop an in-depth 

understanding of the record of sea-level fluctuations. As a consequence, the record 

contains more information on the timing and nature of sea-level fluctuations than just the 

relatively small number of dated fossil corals. Fig. 11 includes the sea-level record from 

the stratigraphic modelling of Huon terraces by Chappell [2002], which is representative 

of the other Huon Peninsula studies [Yokoyama et al., 2001; Esat and Yokoyama, 2006]. 

Chappell [2002] concluded that sea-level rises coincided with major cold DO stadials in 

the Greenland records (specifically with Heinrich events), based on a comparison 

between U/Th ages and the GISP2 time scale. Subsequent work supported this conclusion 

[Esat and Yokoyama, 2002; 2006].  

 

Without careful screening a reliable sea-level record cannot be derived from coral reef 

data [e.g. Gallup et al. 1994; Cutler et al. 2003] but screened or corrected records provide 

increasingly reproducible results. Indeed, many studies of fossil corals point out that 

many potential dating points need to be rejected, since they fail to meet the required 

criteria for closed-system behaviour [e.g. Stirling et al., 1998]. This requirement has thus 

far inhibited the development of an independent, highly resolved, sea-level record based 

on coral samples [Cutler et al., 2003]. Thompson and Goldstein [2005; 2006] applied a 

new method to correct U/Th dated corals for open system behaviour, resulting in a large 

increase in the number of fossil reef based sea-level estimates. As in all multi-regional 
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compilations, care is due when interpreting the Thompson and Goldstein [2005; 2006] 

record where it comprises data from different sites with different uplift rates. However all 

coral indicators used in the MIS 3 section of their sea-level record originate from Huon 

Peninsula, and are therefore internally consistent. Unlike the reconstruction of Chappell 

[2002], the work of Thompson and Goldstein [2005; 2006] takes only limited account of 

the stratigraphic context within which corals were recovered. 

890 

891 

892 

893 

894 

895 

896 

897 

898 

899 

900 

901 

902 

903 

904 

905 

906 

907 

908 

909 

910 

911 

912 

913 

914 

915 

916 

917 

918 

919 

920 

  

The fossil coral data and reconstructed sea-level records of Thompson and Goldstein 

[2005; 2006] and Chappell [2002] are compared in Fig. 11. Both reconstructions show 

generally higher sea level in the earlier part of MIS 3 than towards the end, and both 

show at least 4 sea-level fluctuations of 20 to 30 m magnitude. In the context of absolute 

timing we note that the Thompson and Goldstein [2005; 2006] age estimates offer close 

matches to the orbital SPECMAP timing of stadial to interstadial transitions of the last 

three glacial cycles. 

 

Despite the similarities between the records there are important differences between the 

Chappell [2002] and Thompson and Goldstein [2005; 2006] sea-level estimates and here 

we discuss these. The open-system correction carried out by Thompson and Goldstein 

[2005] makes most of the Huon ages older, and the uplift-corrected sea levels therefore 

lower.  It is the shift to older and lower data points, as well as the addition of data from 

Cutler et al. [2003] that changes the timing of the MIS 4/3 transition between the 

reconstructions of Chappell [2002] and Thompson and Goldstein [2005; 2006]. The ages 

in the Chappell [2002] paper were first published in Chappell [1996] and are not strictly 

closed-system ages - the initial δ234U ranges from 132 to 144 while the modern seawater 

value is ~145 to 146 which brings into question the reliabity of these ages. Because many 

of the original ages were alpha-counted the precision on the measured 234U/238U was 

insufficient for this ratio to be useful as a screening tool or a correction constraint.  

Alpha-counted ages, ages with δ234U of poor precision, and corals with significant calcite 

were excluded from the Thompson and Goldstein [2005; 2006] analysis.  Of the 12 data 

points supporting the Chappell [2002] curve, 7 were alpha-counted and these were 

therefore rejected for the Thompson and Goldstein [2005; 2006] analysis.  Of the 5 corals 
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remaining, only 2 act as defining points on the Thompson and Goldstein [2005; 2006] 

record. The Thompson and Goldstein [2005; 2006] curve contains additional high-

precision Huon data from Cutler et al. [2003].  For these reasons, it is not surprising that 

the two sea level curves are different in detail.  Rather, it is encouraging that they retain a 

lot of structural similarity, given that they have so few data points in common. 
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5.4 Synthesis 

Here we compare in detail the phasing of sea-level change for both the synchronised and 

dated records that were discussed. We look in detail at the sea-level shifts at around 40-

38 ka BP and around the MIS 4-3 transition (Figs. 12 and 13).  

 

Differences between the various reconstructions are partly due to ambiguity in the choice 

of curve drawn through the discrete fossil coral points of Thomson and Goldstein [2005]. 

As noted by those authors, the curve they drew is not unique. This is clearer if we look at 

detailed plots of specific sea-level fluctuations (Figs. 12, 13). In most instances, discrete 

data points remain in fairly good agreement with the Arz et al. [2007] and Chappell 

[2002] sea-level estimates. The Thomson and Goldstein [2005; 2006] curve seems to 

agree with the Arz et al. [2007] sea-level reconstruction at the start of MIS 3 (Fig. 13) but 

there are some differences between these same records during later periods (compare Fig. 

10 and Fig. 11). The analysis presented in this section will consider the timing of the 

changes and not the absolute value of the sea-level positions. 

 

Fig. 12 shows the four attempts at defining the ages of the MIS 3 sea-level fluctuations 

[Chappell, 2002; Thompson and Goldstein, 2005; Arz et al. 2007; Shackleton et al., 2000] 

and our interpretation of the results of Shackleton [2000] (see Fig. 3) are shown for the 

sea-level transition at around 39 ka BP. Given the challenges in creating the various sea-

level records, there is remarkable agreement in the timing of the sea–level rise over this 

period. This timing clearly places the sea-level rise during a period in the Hulu Cave 

record linked to a cold phase in Northern Hemisphere climate and a warming phase in 

Antarctica (i.e. Southern Hemisphere).  
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Additional information is available from a strong freshening in the Gulf of Mexico during 

this period, which has been linked to melting of the Laurentide ice sheet [Hill et al., 

2006]. This record has been tied to the SFCP timescale using the coincidence of the 

Laschamp event in the Gulf of Mexico and GRIP records. Such a synchronisation and the 

best information available from dated sea-level records reveals that the Laurentide ice 

sheet apparently provided a considerable freshwater flux into the Gulf of Mexico during 

the D-O stadial, and that the surface freshening signal in the Gulf of Mexico persisted 

into the subsequent D-O interstadial. 

 

Regarding the timing of the MIS 4-3 transition, all the reconstructions are in reasonable 

agreement with the SPECMAP estimate of 59 ka BP (Figs. 10 and 11). However, the 

records differ in their finer details (Fig. 13). For the curves of Thompson and Goldstein 

[2005; 2006] and Arz et al. [2007], the transition occurs during a phase in the Hulu cave 

record which is linked to a warm phase in Greenland. The Chappell [2002] curve and our 

interpretation of Shackleton et al. [2000] differ from the other two approaches in that they 

suggest an earlier age for the start of MIS 3, in line with increases in Antarctic 

temperature and a relatively cold period in Greenland.  

 

There remain significant uncertainties about the absolute age constraints of the dominant 

northern hemisphere climatic fluctuations and about the dating/synchronisation 

techniques used to constrain sea level changes during MIS 3. The Arz et al. [2007] and 

Thompson and Goldstein [2005; 2006] reconstructions do not reveal a consistently 

reproducible picture of the timing of sea-level change with respect to large-scale changes 

in climate through the duration of MIS 3. An age offset of up to 2000 years might explain 

this discrepancy for the Arz et al. [2007] record (see Section 5.2) and we also reiterate the 

fact that there remain considerable uncertainties about the absolute chronologies of the 

various ice-core records.  

 

Sea level may not have followed systematic, repeating patterns during MIS 3, which one 

might link in a consistent fashion with similar records of temperature change. However, 
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an impressive number of different records capture the Greenland and Antarctic climate 

events and the systematic, repeating patterns of their variation during MIS 3. It seems 

unlikely that global ice volume acted independently of large scale temperature changes 

during MIS 3. We therefore propose that a good test of dating/synchronisation techniques 

for temperature and sea-level records through MIS 3 is that they give mutually consistent, 

repeated patterns, similar to the synchronised temperature records of Antarctica and 

Greenland [Blunier and Brook, 2001; EPICA Community Members 2006]. Note that the 

lagged response of ice-sheet growth to temperature change suggests that the ice volume 

response may be more complicated than the response of Antarctic temperature to D-O 

events. 

 

5.5 Ice sheet growth rates 

Despite the difficulties related to intercomparison of records on ‘absolute’ time scales, 

other information can be obtained from the various sea-level records we present in this 

paper. The growth rates of the large continental ice sheets may be estimated even from 

records that lack absolute time scales or are discontinuous. For example Cutler et al. 

[2003] used two Huon Peninsula corals to estimate ice sheet growth rates of 1 to 2 cm yr-

1 (sea-level equivalent units are used throughout the paper) for the MIS 5-4 transition, 

and used the benthic oxygen isotope record of core V19-30 to imply that similar growth 

rates occurred during MIS 3. Dependence on any one site for a ‘typical rate of ice-sheet 

growth’ leaves the possibility of bias due to local, isostasy. It is therefore very significant 

that this result is replicated during other periods, at other sites and using alternative 

methods. Siddall et al. [2003] found growth rates of the order of 2 cm yr-1 based on their 

reconstructions from a central Red Sea planktic oxygen isotope record [see also Rohling 

et al., 2004], a value that was corroborated by work on the northern Red Sea [Arz et al., 

2007]. U/Th dated coral estimates that were corrected for open-system effects [Thompson 

and Goldstein, 2005; 2006] also support ice-sheet growth rates during MIS 3 of 1 to 2 cm 

yr-1 and this rate is found at multiple sites by these authors. There are additional periods 

in the sea-level history that illustrate similar growth rates, and these will be further 

described in Section 6.3 below. 
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6 Interpretation and discussion 

6.1 Synthesis of MIS 3 sea-level reconstructions 

Although some ambiguities remain between the various records, we find that a common 

millennial-scale stratigraphy emerges from the studies of MIS 3 sea level considered 

here. The stratigraphic characteristics of all of the reconstructions are summarised in 

Table 1. All the dated curves are in reasonable agreement with the SPECMAP estimate 

for the MIS 4-3 transition of 59 ka BP [Imbrie et al. 1984]. It is tempting to suggest that 

insolation drove sea levels to be approximately 20 m higher during the first half of MIS 3 

compared to the latter half, although the relationship between insolation and ice volume 

is likely to be complicated during the glacial period [e.g. Huybers 2006]. An alternative 

explanation will be given in Section 6.5. Superimposed on this longer-term change are at 

least four millennial-scale sea-level fluctuations of 20 to 30 m magnitude. This estimate 

relies principally on the Red Sea isotope records and the fossil coral data, but is strongly 

supported by other indicators such as the benthic oxygen isotope records. The presence of 

four major fluctuations does not rule out higher frequency, lower magnitude variations 

during MIS 3 that are not resolved by the techniques included here, but which might be 

feasible given a potential ice-sheet growth rate of 1 to 2 cm yr-1. New, highly resolved 

records from a variety of techniques are needed to assess whether such higher frequency 

events may have existed.  

 

A stratigraphy of four sea-level fluctuations during MIS 3 does not close the debate on 

the timing of sea level change – both Antarctic (southern hemisphere) timing or 

Greenland (northern hemisphere) timing are equally plausible. For example it could be 

argued that ice volume is the result of ice-sheet growth/reduction integrated over the 

cold/warm intervals linked to the sequence of four Bond cycles during MIS 3. 

Alternatively one may argue that the presence of four fluctuations links changes in global 

ice volume with the timing of Antarctic (southern hemisphere) warm events A4 to A1 

[e.g., Siddall et al., 2003; Rohling et al., 2004]. Indeed, Clark et al. [2007] argued that 
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Bond cycles, Antarctic (southern hemisphere) warm events, and sea level changes are all 

linked. As discussed in this text, there is growing evidence to help decide this question. 

 

In Figs. 12 and 13, we have considered in detail two well-defined sea-level transitions 

using four different approaches giving a total of eight records of instances of rapid sea-

level change. In 6 out of those eight records the rapid sea-level change would appear to 

coincide with a period in the Hulu cave record that relates to a cold phase in Greenland 

and warming phase in Antarctica. For the sea-level rise at around 39 ka BP, all four 

records indicate rising sea level during a cold period in Greenland (Fig. 12). This is 

supported by indications of strong freshening of the Gulf of Mexico during the same 

event [Hill et al., 2006], which would suggest that fluctuations in the volume of the 

Laurentide ice sheet are at least partly responsible for the most recent of the large MIS 3 

ice-volume fluctuations (this does not suggest that the Laurentide contribution excludes 

any contribution from Antarctica, as suggested by Rohling et al. [2004]). With the 

improvements to techniques and time frames, a convergence seems to be emerging of 

available evidence on rises in sea level during the cold phases in Greenland and warming 

phases in Antarctica. The agreement between techniques is stronger for more recent 

events, which may be due to the decrease in the uncertainties of age models with more 

recent periods (Figs. 12 and 13). 

 

6.2 Ice sheet response/feedback 

It is commonly assumed that ice-sheet growth over a glacial cycle follows a saw-tooth 

pattern of very slow ice-sheet growth during the glacial period and rapid loss during the 

glacial termination [see for example, Imbrie et al. 1984; Bintanja et al., 2002; Huybers 

and Wunsch 2004; Lisickie and Raymo 2005.]. However, this assumption is challenged 

by observations of rapid changes in eustatic sea level from coral indicators which indicate 

rapid increases in ice volume during several important transition periods: the MIS 5-4 

transition [Cutler et al., 2003]; the MIS 5e-5d transition [Andrews and Mahaffy, 1976; 

Lambeck et al., 2002]; and during a reversal within the sea-level rise of the penultimate 

deglaciation [Esat et al., 2000; Siddall et al., 2006b; Thompson and Goldstein, 2005; 
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2006]. Recently reported data from Barbados also support the possibility of rapid ice 

sheet growth during the MIS 3-2 transition [Lambeck et al., 2002; Peltier and Fairbanks, 

2006]. All of these studies indicate values between 1 and 2 cm of sea-level equivalent 

ice-sheet growth per year, which would agree with the estimates for MIS 3 derived here.  

 

Many ice-sheet models are forced, at least in part, using reconstructions of Greenland 

temperature [see, for example Marshall and Clarke, 1999; Bintanja et al., 2002; Arz et 

al., 2007]. This approach assumes that temperature over the major Northern Hemisphere 

ice sheets followed similar trends to temperatures inferred from the Greenland ice-core 

records. This assumption obviously does not hold during interglacial periods, when the 

Laurentide ice sheet is not present (and therefore does not vary in line with Greenland 

temperature) – one may then ask when the transition is between the glacial phase (when 

Greenland temperature variations may be linked to changes in the Laurentide ice sheet) 

and the interglacial phase (when there is no Laurentide ice sheet). Modelling attempts 

forced with the Greenland temperature fluctuations have struggled to generate ice-sheet 

growth rates that could match the observational estimates of ice sheet growth during the 

key phases of the last glacial cycle [see, for example Marshall and Clarke, 1999; 

Bintanja et al., 2002]. This questions the suitability of the seemingly straightforward 

assumption that the large Northern Hemisphere ice sheets waxed and waned in response 

to the climate rhythm expressed by the Greenland (DO) temperature fluctuations 

[Marshall and Clarke, 1999]. 

 

Denton et al. [2005] suggest that variability of the Laurentide Ice Sheet (LIS) may have 

been dominated by summer melting, and so would not have been directly influenced by 

the (winter-dominated) temperatures recorded by the Greenland ice-core proxy data. In 

support of this analysis Hill et al. [2006] conclude their analysis of the phasing of 

meltwater input into the Gulf of Mexico stating that: ‘…our results indicate that 

growth/decay fluctuations of the LIS may have been decoupled from Greenland air 

temperature history during MIS 3.’ The present study supports the argument of Denton et 

al. [2005] by postulating a distinction between the temperature variations recorded in the 

Greenland ice-core temperature-proxy records and the mechanisms that control the 
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waxing and waning of the major ice sheets. Recently Schaefer et al. [2006] compiled 

evidence for the retreat of many mountain glaciers worldwide during the last termination. 

They suggest that the initiation of the retreat of these mountain glaciers would appear to 

be synchronous with the commencement of warming in Antarctica. 
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Temperatures across much of the northern hemisphere are thought to be strongly 

influenced by ocean heat transport in the Atlantic [e.g., Rahmstorf, 2002; Stocker and 

Johnsen 2003; EPICA Community Members 2006]. The transport of heat in the North 

Atlantic is generally attributed to variations in the region’s surface buoyancy (which 

controls the convection of surface waters to the deep ocean), which in turn is influenced 

by Heinrich events and meltwater influxes from the northern hemisphere ice sheets [e.g., 

Ganapolski and Rahmstorf, 2002; Knutti et al., 2004]. However, oceanic responses do 

not seem to be straightforward with respect to either the rate or magnitude of meltwater 

fluxes and vary between different observational techniques, models and hypothetical 

scenarios [Rohling et al., 2004; Roche et al., 2004; Stanford et al., 2006]. Such linked 

processes necessitate coupled modelling, rather than stand-alone models of ice-sheet 

growth or ocean responses to meltwater input, in order to develop an understanding of the 

phasing between ice-volume variations and the temperature records of Antarctica and 

Greenland. Such efforts are discussed in the following sections.  

 

6.3 Climate Modelling 

Stocker and Johnsen [2003] considered a conceptual model of the thermal bipolar seesaw 

to address climatic variability during MIS 3. In their model the temporal behaviour of 

temperature at high southern latitudes is not in strict antiphase to that in high northern 

latitudes, but instead it represents an integration in time due to thermal storage in the 

southern ocean. Essentially along the axis of the Atlantic, the temperature change 

responds as a seesaw. If the AMOC should collapse during a period of freshwater input 

into the North Atlantic, then reduced oceanic heat flux towards the North Atlantic would 

drive a decrease in temperature in the North Atlantic. Reduced oceanic heat flux to the 

North Atlantic is linked to heat retention in the south, which then drives an increase in 

 38



1132 

1133 

1134 

1135 

1136 

1137 

1138 

1139 

1140 

1141 

1142 

1143 

1144 

1145 

1146 

1147 

1148 

1149 

1150 

1151 

1152 

1153 

1154 

1155 

1156 

1157 

1158 

1159 

1160 

1161 

1162 

temperature in the South Atlantic. Heat transfer along the length of the Atlantic is 

suggested to be efficient due to transfer of energy via Kelvin waves along the margins. 

The transfer of heat across the Southern Ocean is less efficient and is dominated by 

horizontal mixing by eddies [e.g. Keeling and Visbeck, 2005]. Heat takes time to cross 

the Southern Ocean in this way and therefore the increase in Antarctic temperatures lags 

the South Atlantic signal. In fact the Antarctic signal is suggested to be ‘catching up’ with 

the North Atlantic forcing during D-O stadials, so that Antarctica continues to warm as 

long as the D-O stadial persists – Antarctic warming/cooling would therefore be 

proportional to the duration of the D-O stadial/interstadial periods [Stocker and Johnsen, 

2003]. 

 

Although this model would explain much of the variance observed, the simple thermal 

bipolar seesaw is not entirely satisfactory because the time scale needed to characterise 

the heat transfer across the Southern Ocean was found to be considerably longer than that 

suggested by dynamical models [Stocker and Johnsen, 2003]. This inconsistency was 

addressed using a 3-dimensional ocean circulation model coupled to a simple atmosphere 

model [Knutti et al., 2004]. These authors simulated meltwater input in the North Atlantic 

by reducing surface salinity there (i.e. by removing salt). The removal of salt in the North 

Atlantic was compensated by the addition of salt to the ocean surface elsewhere. Such 

removal of buoyancy from the ocean surface in much of the ocean may bias the results, 

which nevertheless remain interesting to consider. The model suggests that meltwater 

injections into the North Atlantic affected Atlantic circulation in two ways. Firstly, the 

mechanism of reducing or halting the production of North Atlantic Deep Water appears 

important, in agreement with Stocker and Johnsen [2003]. Secondly, the meltwater input 

was found to also have a direct effect on Atlantic circulation by displacing isopycnal 

surfaces, which ultimately slowed down the Antarctic response in addition to the effect of 

Southern Ocean mixing timescales. Knutti et al. [2004] provided a simple, conceptual 

model of this effect, which linked the Antarctic response to the duration of the cold D-O 

stadial [as Stocker and Johnsen, 2003] but also to the magnitude of the meltwater pulse. 

This model implies that freshwater input occurred largely during Greenland cold phases. 

According to the model, freshwater input may also impinge on Greenland warm phases if 
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a threshold value of the freshwater input is not crossed. Integration of the modelled 

freshwater forcing would imply that the ice–sheet reduction occurred during Greenland 

stadials and ice-sheet increase during Greenland interstadials. Essentially this argues for 

an Antarctic-style timing of ice-volume/sea-level fluctuations, as was suggested by the 

benthic oxygen isotope record of Shackleton et al. [2000] and the original Red Sea sea-

level study of Siddall et al. [2003] (see also Rohling et al. [2004]). Knutti et al. [2004] 

focused on the climatic response to freshwater input in the North Atlantic and therefore 

do not provide an explanation as to why the ice sheets might behave in this way. The 

absolute value of the changes in ice-sheet volume during this period as implied by Knutti 

et al. [2004] are model dependent and sensitive to the model set up and are therefore not 

reported in the paper. 

 

6.4 Coupled ice sheet, climate modelling 

Several conceptual and numerical models have attempted to consider the coupled 

response of ice-sheet and temperature fluctuations from different perspectives. Here we 

consider a few of these models. 

 

Clark et al. [1999] suggested that at intermediate stages of the growth of the Laurentide 

ice sheet (i.e. for periods similar to MIS 3) there could be a self-sustained cycle related to 

the position of the southern edge of the ice sheet relative to a threshold latitude. At this 

latitude meltwater is restricted to flow southwards via the Mississippi and above this 

latitude meltwater flows northward into the polar north Atlantic. It was suggested that if 

the southern edge of the Larentide ice sheet receded to the north of the threshold latitude, 

then meltwater would flow into the polar Atlantic, reducing the AMOC and the heat 

transport to the north Atlantic. The reduced poleward heat transport would then cool the 

region of the Laurentide ice sheet and promote a positive mass balance. With positive 

mass balance the ice sheet would grow and the southern edge of the ice sheet would 

migrate southward. Once south of the threshold latitude meltwater would be diverted into 

the Caribbean via the Mississippi and would no longer restrict the AMOC. With a 

reinvigorated AMOC poleward heat transport would increase, raising the temperature in 
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the region of the Laurentide ice sheet and creating a negative mass balance. Negative 

mass balance causes a reduction in the ice sheet and a northward migration of the 

southern edge of the ice sheet so that the cycle starts again. Conceptual models such as 

that proposed by Clark et al. [1999] need careful validation with more quantitative, 

dynamic models such as that described in the next paragraph. 

 

Simulations of ice-sheet variability during MIS 3 with the coupled low-resolution 

CLIMBER earth system model [e.g., Arz et al. 2007] contrast with the results of Knutti et 

al. [2004]. The CLIMBER simulations suggest ice-sheet growth during Greenland DO 

stadials, when increased moisture transport to the region of the Laurentide ice sheet and 

reduced temperatures would support the growth of ice sheets. Conversely, the model 

suggests ice-sheet reduction (sea-level rise) during the warm DO interstadials.  

 

A recent study by Clark et al. [submitted] applies the atmospheric moisture transport 

fields from an atmospheric general circulation model to a mass-balance model of the 

Northern Hemisphere ice sheets. As an extension of the seesaw concept, these authors put 

forward the notion that temperature in the Equatorial Pacific may be linked to Antarctic 

temperatures via water masses that are subducted in the Southern Ocean and upwelled in 

the equatorial Pacific. Using this reasoning, an atmospheric climate model is driven by 

both a hypothetical temperature variation in the equatorial Pacific, which follows the 

Antarctic temperature reconstructions, and the Greenland temperature reconstructions. 

The moisture transport from this model was in turn used to drive a mass-balance model 

of the major northern hemisphere ice sheets. The results from this modelling work 

suggest that the growth of the major northern hemisphere ice sheets was linked to 

temperature changes in the North Atlantic as well as the equatorial Pacific, which in turn 

are linked to changes in Antarctic temperature. The resulting waxing and waning of the 

ice-sheet then follows a pattern with a timing similar to that of Antarctic temperature 

variability, with decreases in ice volume (increases in eustatic sea level) during cold 

periods in the Greenland temperature records. In agreement with data summarised here, 

the model simulations resulted in four sea-level fluctuations of 10 to 20 m magnitude. 

 41



1223 

1224 

1225 

1226 

1227 

1228 

1229 

1230 

1231 

1232 

1233 

1234 

1235 

1236 

1237 

1238 

1239 

1240 

1241 

1242 

1243 

1244 

1245 

1246 

1247 

1248 

1249 

1250 

1251 

1252 

This model presents a possible mechanism for an internal oscillation in the ice-ocean-

atmosphere system on time scales set by ocean mixing and the ice-sheet response. 

 

It is obvious that both data and modelling can be (and have been) used to make either 

phasing argument for the sea-level variability. The solution to this conundrum will 

require new, highly resolved, co-registered data of sea-level fluctuations and regional 

(either DO-style or Antarctic-style) climate variability, and fully coupled models (ice-

ocean-atmosphere) with complete representation of ice-sheet dynamics that can be run in 

transient modes.  

 

6.5 A conceptual ‘limiting ice-sheet growth/loss model’ 

Given the discussion in section 6.2 about the apparent maximum sustainable rates of ice-

sheet growth of 1-2 cm yr-1, we now develop a simple model of ice-sheet growth and 

decay based on two simple assumptions: (1) Ice-sheet growth is rate-limited to 1 cm yr-1 

and; (2) Ice-sheet loss is constrained to a similar rate. We base assumption 1 on the 

reconstructed rates of ice sheet growth from the literature  [Esat et al. 2000; Cutler et al. 

2003; Siddall et al. 2003; 2006b; Thompson and Goldstein, 2005; 2006] and recent 

modelling efforts that have managed to reconstruct ice-sheet growth rates of this 

magnitude [Peltier and Fairbanks, 2006](see Section 6.2). Assumption 2 is based on the 

apparent near symmetry of the rises and falls in sea level during MIS 3 that is apparent in 

all of the sea-level reconstructions presented in this paper. In summary ice-volume is 

either allowed to increase or decrease at a fixed rate of 1 cm yr-1 depending on whether it 

is a cold or warm period in Greenland. Note that assumption 2 is based on observational 

constraints of sea-level variation during MIS 3. During the termination of the last glacial 

period the maximum rate of ice-sheet reduction reached 3-5 cm yr-1, as constrained by 

both Barbados [Fairbanks 1989; Stanford et al. 2007] and Tahiti corals [Bard 1996], 

greater than the maximum observed rates of ice-sheet growth during the glacial period of 

1-2 cm yr-1. Although the termination of the last glacial period is not necessarily 

analogous to MIS 3, we include sensitivity tests to illustrate the effect of increased rates 

of ice-sheet reduction compared to ice-sheet growth.  
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We first represent the growth and decay of global ice volume by increasing/decreasing 

global ice volume during Greenland cold/warm intervals on the GRIP SS09 timescale 

[Johnsen et al.. 2001; Blunier and Brook, 2001], as defined in Fig. 14a. We also show the 

methane-synchronised record from the Byrd ice core for reference in Fig. 14b [Blunier 

and Brook, 2001]. We compare the model results with the Siddall et al. [2003] Red Sea 

sea-level curve on the GRIP SS09 time scale (details of the age model are given in the 

Fig. 14 caption).  

 

We first consider a scenario in which ice volume grows during cold periods and 

decreases during warm periods. In this scenario ice continues to grow until the abrupt 

MIS 4/3 transition in the Greenland record (Fig. 14c). There is then a period of melting 

lasting some 9000 years during the Greenland warm period. This continuous period of 

melting leads to a lag of 9000 years between the end of the MIS 4 sea-level lowstand and 

the first major MIS 3 sea-level highstand. The resulting sea-level curve bears little 

similarity to the MIS 3 stratigraphy defined by the reconstructions discussed in this text 

and represented by the Siddall et al. [2003] Red Sea sea-level curve.  

 

We next consider the opposite scenario, where sea level is driven by ice-sheet growth 

during Greenland warm periods (Fig. 14d). Despite the very simple approach, this 

scenario captures the dominant features of the MIS 3 sea-level curve. Ice loss commences 

earlier and the first MIS 3 sea-level highstand occurs very close to its synchronised 

timing. Interestingly, the period of reduced temperature that precedes the rapid MIS 4/3 

transition in Greenland (corresponding with Antarctic warming) also drives sea level to 

be around 20 m higher in the first half of MIS 3 compared to the latter half – a robust 

feature of the MIS 3 sea-level stratigraphy. By simply invoking an Antarctic style timing 

for the MIS 3 sea-level record (as in Siddall et al. [2003]), we therefore find an 

alternative explanation for the fact that sea-level was higher during the early half of MIS 

3 (i.e., alternative to the idea that this would reflect the small change in northern summer 

insolation forcing through MIS 3). 
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We now consider the case of a greater rate of ice-volume loss than ice-volume increase. 

The dashed lines in Figs. 14c and 14d are included to illustrate the effect of making ice-

sheet loss rate greater than ice-sheet growth during MIS 3. In each simulation the upper 

dashed line represents the effect of an ice-sheet loss rate of 1.25 cm yr-1 compared to a 

growth rate of 1 cm yr-1. The lower dashed line represents the effect of an ice-sheet loss 

rate of 1 cm yr-1 compared to a growth rate of 0.75 cm yr-1. Larger ice-sheet reduction 

compared to ice-sheet growth leads to a net loss of ice and a corresponding increase in 

sea level during MIS 3 for both simulations, in poor correspondence with sea-level 

estimates. This effect is easily explained – the total duration of warm D-O periods in 

Greenland is very similar to the total duration of cold periods (one could also say the total 

duration of warming periods in Antarctica is similar to the total duration of cooling 

periods). Any increase in the rate of ice-sheet loss compared to ice-sheet growth over this 

period leads to a net loss of ice volume by the end of MIS 3. Even the relatively subtle 

asymmetry applied in the sensitivity tests leads to a net ice-sheet reduction of 50 m. The 

ice-volume response integrated over the whole of MIS 3 is estimated to be only 20 m. 

This result would imply that the rate of ice-sheet growth was similar to the rate of ice-

sheet reduction during MIS 3, which may either imply an increase in ice-sheet growth, a 

reduction in ice-sheet loss or indeed both. It seems plausible that the inferred similarity in 

the rates of ice-sheet growth and loss during glacial times (MIS 3) reflects more rapid 

growth of ice sheets under glacial conditions than during interglacials or deglaciations. 

Equally, the processes underlying the greatly accelerated rates of ice-volume loss during 

glacial terminations may not be analogous to those governing the rates of ice-volume loss 

that episodically occurred during the predominantly glacial conditions of MIS 3, i.e. the 

maximum rate of ice-volume loss could be reduced during MIS 3 compared to the 

termination. We conclude that it is likely that both ice-sheet growth rates increased 

during the glacial period and rates of ice-sheet loss reduced in order to generate the 

observed similarity between ice sheet growth and loss. 

 

Although the various sea-level reconstructions disagree on the details of chronology, they 

do resolve a consensus chronology that is sufficiently constrained to allow testing of the 

two modelled scenarios, by exploiting the predicted 9000 year difference in the timing of 
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the initial MIS 3 highstand between the two scenarios (Figs. 14c,d). In the context of this 

simple, conceptual model of limiting ice-sheet growth/loss, all of the available evidence 

for the timing of the MIS 4-3 sea-level transition discussed in Section 5 (Figs. 10-14) 

supports the hypothesis that sea level rose during Greenland stadials and fell during 

interstadials. The other scenario, with sea-level rising during Greenland warming [e.g. 

Arz et al., 2007], is not supported by our simple model. Because cold periods in 

Greenland correspond to Antarctic warming events [Blunier and Brook, 2001], the 

accepted scenario argues for an Antarctic-type timing of the global sea-level/ice-volume 

fluctuations, as previously proposed by Shackleton et al. [2000], Siddall et al. [2003], and 

Rohling et al. [2004]. As discussed above, Clark et al. [2007] provide a plausible 

physical mechanism which can explain this timing of events. 

 

Note that ice-sheet and ocean responses operate on different time scales – ocean heat 

transport is expected to respond rapidly to meltwater pulses [Stocker et al. 1992; Manabe 

and Stoufer 1997; Ganapolski and Ramstorf, 2002; Stocker and Johnsen, 2003; Knutti et 

al., 2004; Schmittner et al., 2005] but ice sheets respond on time scales of thousands of 

years [e.g. Marshall and Clarke, 1999; Bintanja et al., 2002; Arz et al., 2006]. If one 

assumes that MIS 3 ice-volume fluctuations drive the D-O cold periods by defining 

periods of Laurentide melting, then one may anticipate that increases in sea level are 

closely timed to the D-O cold phases (because of the short response time of ocean 

circulation to meltwater input). On the other hand if the D-O cold phases promote ice-

sheet growth a more complicated relationship involving a lag of the ice-sheet response to 

temperature change may be expected and a more sophisticated model might be more 

appropriate (because of the relatively slow response of ice sheets to temperature change). 

That our simple model gives such a promising result is best explained therefore if the 

Greenland temperature proxy record represents a response to melting of the Laurentide 

ice sheet, rather than the Laurentide ice sheet responding to Greenland temperature. To 

confirm this result one would need to consider a more sophisticated model which 

incorporates the lagged response of sea-level change to temperature. 
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Throughout this text we have concentrated on the large-magnitude variability of the four 

major sea-level fluctuations, which are unambiguously resolved in nearly all of the 

records presented. The question of an ice-volume response to the shorter D-O events or 

lower magnitude AA events has not been addressed. Fig. 14 makes it clear why it is hard 

to address this issue with the available data and methods – these events only last around 1 

kyr, which implies a maximum ice-sheet response of 10 to 20 m (given an ice-sheet 

growth rate of 1-2 cm yr-1). This does not allow for any time lag in the ice-sheet response 

and so this is an upper estimate. Both the time scale and magnitude of this response are 

very difficult to resolve in coral records or downcore records of marine oxygen isotopes. 

Note that none of the records in this paper claims to be able to resolve sea-level variations 

that are less than 12 m in magnitude (at the 2σ uncertainty level). There is some 

indication from Red Sea records that there is a response to these short events between 40 

and 45 ka BP (Figs. 8 and 9) but this is certainly ambiguous and not yet adequately 

resolved. 

 

The results of our conceptual model should be regarded with caution in this respect. The 

model does not include any time lag in the response of ice sheets. If included, this would 

lead to a smaller response than suggested in Fig. 14. In this respect it is crucial to 

establish whether the model can be considered suggestive of an oceanic response to 

meltwater input into the Atlantic that led to reduced northward heat transport by the 

AMOC. If so, then there would be very little lag because the oceanic response to 

meltwater input is rapid and the model would suggest that ice-sheet fluctuations of the 

order of 10 to 20 m may indeed be found in association with short D-O events. If, on the 

other hand, our conceptual model represents an ice-sheet response to temperature 

variations, then a time lag of thousands of years may need to be applied, which would 

greatly reduce the predicted magnitudes of ice-sheet response to short D-O events.  
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There are important differences between models of varying complexity on the predicted 

phasing of ice-volume and climate change during MIS 3. Although dating and 

synchronisation techniques continue to improve, considerable uncertainties remain. These 

uncertainties concern not only the chronology of sea-level fluctuations, but also arise 

from the many different age models used for Greenland and Antarctic records [e.g. 

Johnsen et al., 2001; Johnsen et al., 1995; Meese et al., 1997; Shackleton et al., 2004; 

Andersen et al. 2006]. Even well dated palaeoclimate proxy records such as that from 

Hulu Cave suffer from large variations in growth rate and contain sections where the 

comparison with Greenland ice-core records is ambiguous [Shackleton, 2004; Clark et al. 

2007]. Regarding radiometrically dated coral samples, the correction of U/Th dates for 

open system effects remains contentious. Because most sources of uncertainty have been 

identified, however, we anticipate that many of the chronological issues raised in this 

paper may be resolved as age models and synchronisation techniques improve. 

 

 

Despite these difficulties we consider that there is important convergence from the 

various approaches on the magnitude and rate of sea-level change during MIS 3: 

 

1.) MIS 3 sea level consisted of an initial rise to a level of approximately -60 m for the 

first half of MIS 3 and subsequent drop to -80 m for the remainder. This 20 m fall in sea 

level may either be driven by changes in summer insolation at 65oN or by the fact that an 

AA-type temperature signal drives ice sheet growth and decay, which followed a similar 

pattern. Sea level then fell to MIS 2 levels. Only one of the eighteen key records shown 

here does not show this characteristic stratigraphy. 

 

2.) Superimposed on this are likely four sea-level fluctuations of between 20 and 30 m 

magnitude during MIS 3.  

 

3.) We note that ice-sheet growth rates observed over several distinct periods (in addition 

to observations within MIS 3) are of the magnitude necessary to drive sea-level 
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fluctuations of tens of meters during the duration of MIS 3. Rates of sea-level change are 

reproduced in several studies using independent techniques and data and are typically 1 

to 2 cm of sea-level equivalent ice-sheet growth per year. 

 

4.) All of the recent studies we have considered estimate that the MIS 4 to MIS 3 

transition in sea level occurred between 57 and 60 ka BP, in good agreement with the 

SPECMAP estimate of 59 ka BP.   

 

5.) There is a convergence of evidence that sea-level rose during cold phases in 

Greenland and warming periods in Antarctica, supporting the notion of Chappell [2002] 

and Siddall et al. [2003] that sea level follows an essentially Antarctic rhythm. This is 

supported (tentatively) by our conceptual ‘limiting ice-sheet growth/loss model’, which 

shows a good resemblance to reconstructed sea-level changes despite its obvious 

simplicity. 

 

Given this last point, the assumption that the temperature history revealed in Greenland 

ice cores is appropriate to force ice sheet models during MIS 3 should be carefully 

examined. Fully coupled modelling of the ocean-ice sheet-atmosphere should be 

developed and careful model inter-comparison carried out. The link between benthic 

oxygen ratios and sea level is of continued interest. Iterative models comprising a 3D 

ocean circulation module combined with a representation of the major ice sheets, which 

aim to find ice-sheet configurations consistent with benthic isotope records from various 

locations, should be further investigated for high resolution records of MIS 3. We 

therefore add a final, more tentative conclusion from this study: 

 

6.) This work suggests that ice-volume fluctuated on an Antarctic rhythm during MIS 3 – 

how can this be the case? Recent modelling work [Clark et al., submitted] suggests that 

the mass balance of the major northern hemisphere ice sheets may be dominated by an 

Antarctic-like temperature signal at the equatorial Pacific. This might explain the 

apparent separation of the Greenland temperature signal from the growth pattern of the 

major northern hemisphere ice sheets during MIS 3. 
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8. Future work 

This review outlines clear directions for further work. These fall into two broad 

categories: improved observational constraints and new modelling approaches. The scope 

for new techniques and methods not yet applied to MIS 3 is discussed in Sections 3.2 and 

3.3 and so we limit our discussion here to advancements in established techniques. 

 

Improvements in dating techniques for speleothem records such as Hulu Cave, improved 

age constraints on ice-core temperature reconstructions and improved age constraints on 

coral ages (e.g., by correcting for open-system effects and by improvements in analytical 

techniques) will all play an important role in helping to refine the observational 

constraints on MIS 3 sea-level variations. 

 

As well as improvements in absolute dating there is scope to derive records with co-

registered signals representing both sea level and some independent proxy. Arz et al. 

[2007] demonstrated this by considering paleomagnetic intensity alongside Red Sea 

oxygen isotope records, albeit with the shortcomings discussed here. Another example is 

the benthic isotope record of the Portuguese margin of Shackleton et al. [2000], which 

were synchronised using the planktic oxygen isotope record, which was strikingly similar 

to Greenland temperature proxies. There is scope to apply this technique to more ocean 

sediment cores in the future. 

 

In terms of sea-level estimates, Chappell [2002] indicated the potential for the modelling 

of coral-terrace formation as a means to develop a rigorous stratigraphic context to better 

constrain coral-based sea-level estimates. After Siddall et al. [2003; 2003; 2004] and Arz 

et al. [2007], further work on Red Sea oxygen isotope records as well as the dynamics of 

the Red Sea response to sea level has potential to better refine the estimates of sea-level 

fluctuations during MIS 3.  
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The existing data do not sufficiently constrain the relationship between MIS 3 

temperature and ice-volume fluctuations to allow distinction between competing 

hypotheses and models. Despite this, existing models and data do make it clear that 

fluctuations in the ice sheets provoked responses in the ocean heat transport and thereby 

high-latitude temperature. The combination of coupled modelling efforts with new data 

will be the key to understanding the climate dynamics during MIS 3, when ice-volume 

and temperature underwent large, abrupt fluctuations. 

 

Many aspects of the observed sea-level and broader climate fluctuations during MIS 3 

remain poorly understood. In particular the underlying processes that drive the variability 

are either not represented or misrepresented in the current generation of climate models. 

Improvements in the representation of ice dynamics (e.g. Alley et al. [2005]) and the 

coupling of ice-ocean-atmosphere systems within models, which are capable of 

millennial-transient simulations will be an important aspect of future work. 
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Table 1 

Summary table of the sea-level reconstructions discussed in the text and their 

stratigraphic characteristics. 
Data type Reference  Description 

(core name, location & 
water depth) 

Higher at 
the start of 
MIS 3 
than end?
  

No. 
Fluctuations 

Magnitude 

Benthic 
oxygen 
isotopes 
(individual) 

Shackleton 
[1987] 

V19-30 
3o 23'S, 83o 31'W, 3091 m, 
western equatorial Pacific 

yes 4+ 20 m 

 Labeyrie et al. 
[1987] 
 

V19-30 
3o23'S, 83o 31'W,  
3091 m, 
western equatorial Pacific 
 

yes 4 20 – 30 m 

 Ninneman et 
al. [1999] 
 

TN057-21 
41°8'S, 7°49'E, 4981 m, 
Cape Basin (south east 

yes 3+ 20 – 30 m 
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Atlantic) 
 

 Shackleton et 
al. [2000] 
 

MD95-2042 
37o47.99’N, 10o9.99’W, 
3146 m, Portuguese 
Margin 
 

yes 4 20 – 40 m 

 Pahnke et al. 
[2000; 2003] 
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oxygen 
isotopes 
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al. [1987] 
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Wunsch 
[2004] 
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leading EOF of five 
benthic records, age model 
assumes constant 
sedimentation for last 17 
glacial cycles 
 

yes 4 20 – 30 m 

Planktic 
oxygen 
isotopes 

Linsley [1996] ODP769 
8.78°N, 121.29°E, 
Sulu Sea, eastern 
equatorial Pacific 
 

yes 3+ 20 – 30 m 

 Dannenmann 
et al. [2003] 
 

IMAGES97-2141 
8.8°N, 121.3° E, 
Sulu Sea, eastern 
equatorial Pacific 
 

yes 4+ 20 – 30 m 

 Lea et al. 
[2000] 
 

TR163-19 
2.15oN, 90.57oW, 
western equatorial Pacific 
 

no 4 20 – 40 m 

Red Sea Siddall et al. 
[2003] 
 

GeoTueKL11 
18o 44.5’N, 39o 20.6’E, 
central Red Sea planktic 
isotopes 
 

yes 4 30 – 40 m 

 Arz et al. 
[2007] 

GeoB 5844-2 
27o42.81’N, 34o40.9’E, 
963 m, 
northern Red Sea benthic 
isotopes 
 

yes 4 20 – 30 m 

Combined Cutler et al. V19-30 yes 3+ 30 – 40 m 
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methods [2003] 3o23’S, 83o31’W, 3091 m,  
western equatorial Pacific, 
benthic isotope record 
scaled to coral indicators 
of sea level 
 

 Waelbroeck et 
al. [2002] 
 

Benthic isotope records 
scaled to coral indicators 
of sea level 
 

yes 4 20 m 

 Shackleton 
[2000] 

Assumptions about the 
Dole effect and deep water 
temperatures were used to 
generate a record of global 
ice-volume/sea-level 
variations from the V19-30 
benthic isotope record and 
the Vostok Deuterium 
record [Petit et al., 1999]. 
 

yes 4 20 – 40 m 

Fossil coral 
reefs 

Chappell 
[2000] 
 

Huon Peninsula, 6.42° S, 
147.5°E -  
Raised fossil reef terrace, 
U/Th ages and reef-growth 
model with stratigraphy 
 

yes 4 10 – 20 m  

 Thompson & 
Goldstein 
[2005; 2006] 

Huon Peninsula, 6.42° S, 
147.5°E –  
U/Th ages on corals 
corrected for open-system 
effects 
 

yes 4+ 20 -  30 m 
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Figure 1 2100 
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2103 

2104 

2105 

2106 

2107 

2108 
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2120 

2121 

2122 

2123 

2124 

2125 

The methane synchronised records of GRIP (original GRIP time scale) and Byrd after 

Blunier et al. [1998; 2001] for comparison with the co-registered planktic and benthic 

δ18O records of core MD952042 from the Portuguese margin, as discussed in the text. 

Vertical grey lines indicate Heinrich events after the review of Hemming [2004]. 

Figure 2 

Locations of the sea-level reconstructions discussed in the text and listed in table 1. 

Figure 3 

Sea-level estimates from benthic oxygen isotope records as discussed in the text. MIS 3 

(60 to 25 kyr BP) is in grey, black dots are data points. Black lines are at -60 m and -80 m 

and indicate ‘typical’ estimates for the early and late periods of MIS 3 respectively. 

Where single lines are shown no uncertainty margin was given in the original text but is 

of the order of ± 30 m [see e.g. Siddall et al., 2006c]. Where multiple lines are shown we 

have estimated sea level based on the suggested calibration of Adkins et al. [2002] the 

uncertainty is due to the variation in this scaling between different ocean basins, as 

discussed in the text.  

Figure 4 

Sea-level estimates from stacked benthic oxygen isotope records as discussed in the text. 

MIS 3 (60 to 25 kyr BP) is in grey, black dots are data points. Black lines are at -60 m 

and -80 m and indicate ‘typical’ estimates for the early and late periods of MIS 3 

respectively. Where single lines are shown no uncertainty margin was given in the 

original text but is of the order of ± 30 m [see e.g. Siddall et al. 2006c]. Where multiple 

lines are shown we have estimated sea level based on the suggested calibration of Adkins 

et al. [2002] the uncertainty is due to the variation in this scaling between different ocean 

basins, as discussed in the text.  
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Figure 5 2126 
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Sea-level estimates from planktic oxygen isotope records. MIS 3 (60 to 25 kyr BP) is in 

grey, black dots are data points. Black lines are at -60 m and -80 m and indicate ‘typical’ 

estimates for the early and late periods of MIS 3 respectively. The error on the Lea et al. 

[2002] estimate is somewhat less than ± 30 m [see e.g. Siddall et al. 2006c], given that 

variation in temperature is taken into account. Where multiple lines are shown we have 

estimated sea level based on the suggested calibration of Adkins et al. [2002] the 

uncertainty is due to the variation in this scaling between different ocean basins, as 

discussed in the text. 

Figure 6 

The width and cross-sectional area of Hanish Sill with respect to water depth. Note the 

large change in the cross section in the 0-120 m range of glacial to interglacial sea level. 

That the cross section changes by nearly 3 orders of magnitude over this range is one of 

the key reasons that the Red Sea is so sensitive to sea-level change. 

Figure 7 

Modelled / marginal basin records, MIS 3 (60 to 25 kyr BP) is in grey, black dots are data 

points. Black lines are at -60 m and -80 m and indicate ‘typical’ estimates for the early 

and late periods of MIS 3 respectively. Errors in some of the techniques are shown on the 

plot. The sensitivities of the other methods are: Waelbroeck et al. [2002] ± 13 m; Siddall 

et al. [2002] ± 12 m; Arz et al. [2007] ± 12 m (without temperature correction) and ± 8 m 

(with temperature correction); Shackleton [2000] no uncertainty is given in the paper but 

it may be assumed that this is in the range of ± 30 m [Siddall et al., 2006]. Note that the 

Waelbroeck et al. [2002] reconstruction is shown here on the same time orbital scale as 

the Shackleton [1987] V19-30 benthic isotope record. The coral data used to scale the 

estimates of Cutler et al. [2003] are shown next to that curve as circles. 

Figure 8 

A direct comparison of sea level reconstructions from Red Sea oxygen isotopes on an 

arbitrary common time scale – in this case the time scale of Siddall et al. [2003]. Red – 

Siddall et al. [2003]. Dark green - Arz et al. [2007] (temperature corrected). Light green – 
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Arz et al. [2007] (uncorrected). The ages of Arz et al. [2007] are transformed onto the 

same time scale as Siddall et al. [2003] by taking tie points at the mid-points of each of 

the major sea-level rises as well as at the MIS 3 to MIS 2 transition (i.e. 24, 39, 47, 53 

and 61 ka BP). 
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Figure 9 

A comparison of age scales suggested for MIS 3 – see text for references. The vertical 

grey bars indicate the maximum differences between age scales for the major D-O events. 

There is reasonable agreement between age models for the most recent parts of MIS 3 

(~700 years difference) but important disagreements exist of as much as 3000 years for 

earlier parts of MIS 3 and 2000 years for the onset of MIS 3.  

Figure 10 

A - dated records and coral-based records. D-O stadials after Hulu cave δ18O are in grey, 

black dots are data points. Horizontal black lines are at -60 m and -80 m and indicate 

‘typical’ estimates for the early and late periods of MIS 3 respectively. The sensitivities 

of the results from the Red Sea method are: Arz et al. [2007] ± 12 m (without temperature 

correction) and ± 8 m (with temperature correction). Green arrows indicate where there 

may be an age offset of 2000 years may explain the age offset between the plots, as 

discussed in the text. B – GRIP ice core δ18O on the SFCP time scale after Shackleton et 

al. [2004] (black line) C – Hulu cave δ18O after Wang et al. [2001]. Grey bars indicate 

‘cold periods’ in the Hulu cave record. The vertical black dashed line represents the start 

of MIS 3 after the SPECMAP estimate.  

Figure 11 

A - dated records and coral-based records. Horizontal black lines are at -60 m and -80 m 

and indicate ‘typical’ estimates for the early and late periods of MIS 3 respectively. 

Errors in the fossil-reef based techniques are shown on the plot. B – GISP2 ice core δ18O 

[Grootes et al., 1997]. C – GRIP ice core δ18O on the SFCP time scale after Shackleton et 

al. [2004] (black line). D – Hulu cave δ18O after Wang et al. [2001]. Grey bars indicate 
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2208 

the uncertainty in the timing of the major stadial-interstadial transitions as in fig. 6. The 

vertical black dashed line represents the start of MIS 3 after the SPECMAP estimate. 

Figure 12 

A - dated records and coral-based records. Colored lines are the same as Fig. 10 and 11: 

Chappell [2002] (Yellow with orange crosses); Thompson and Goldstein [2005] (dark 

blue with light blue crosses); Arz et al. [2006] with temperature corrected (dark green) 

and without temperature correction (light green); Shackleton et al. [2000] scaled after the 

method described in the text (pink). Errors in the fossil-reef based techniques are shown 

on the plot. The sensitivities of the results from the Red Sea method are: Arz et al. [2006] 

± 12 m (without temperature correction) and ± 8 m (with temperature correction). B – 

GISP2 ice core δ18O. C – GRIP ice core δ18O on the SFCP time scale after Shackleton et 

al. [2004] (black line). D – Hulu cave δ18O after Wang et al. [2001] for two different 

speleothem records (red and green). The period of sea-level increase is in pink. 

Figure 13 

A - synchronised records and coral-based records. Colored lines are the same as Fig. 4: 

Chappell [2002] (Yellow with orange crosses); Thompson and Goldstein [2005] (dark 

blue with light blue crosses); Arz et al. [2006] with temperature corrected (dark green) 

and without temperature correction (light green); Shackleton et al. [2000] scaled after the 

method described in the text (pink). Errors in the fossil-reef based techniques are shown 

on the plot. The sensitivities of the results from the Red Sea method are: Arz et al. [2006] 

± 12 m (without temperature correction) and ± 8 m (with temperature correction). B – 

GISP2 ice core δ18O. C – GRIP ice core δ18O on the SFCP time scale after Shackleton et 

al. [2004] (black line). D – Hulu cave δ18O after Wang et al. [2001]. The period of sea-

level increase in the Arz et al. [2006] and Thompson and Goldstein [2005] records is in 

lighter pink. The period of sea-level increase in the Chappell [2002] record is in darker 

pink. The green arrow indicates where there may be an age offset of 2000 years that may 

explain the age offset between the plots, as discussed in the text. 
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Figure 14 

The ‘limiting ice-growth model’- a conceptual model, as described in the text. In the plots 

shown sea level rises and falls at a rate of 1 cm yr-1. The GRIP (A) and Byrd (B)  δ18O 

records after Blunier and Brook [2001]. All records are on the GRIP timescale*. Grey 

bars represent cold periods in the Greenland time scale. C – Greenland ‘cold-stadial fall’ 

timing, ice volume increases (sea level lowers) during cold periods in Greenland and 

decreases (sea level rises) during warm periods in Greenland. D – Antarctic ‘cold-stadial 

rise’ timing, ice volume increases (sea level lowers) during warm periods and decreases 

(sea level rises) during cold periods in Greenland. The y axes in C and D are in units of 

sea-level equivalent ice volume. Both C and D the upper dashed line represents the effect 

of an ice-sheet loss rate of 1.25 cm yr-1 compared to a growth rate of 1 cm yr-1. The lower 

dashed line represents the effect of an ice-sheet loss rate of 1 cm yr-1 compared to a 

growth rate of 0.75 cm yr-1. The original GISP2 age model presented in Siddall et al. 

[2003] is translated onto the GRIP age scale by using tie points at the mid-points of the 

D-O warmings (i.e. 30, 36.5, 39.5, 41.75, 46.5 and 52. 61 ka BP) 
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