
ARTICLES
https://doi.org/10.1038/s41561-017-0054-8

1Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK. 2Department of Earth, Ocean 
& Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK. 3Research School of Earth Sciences, Australian National 
University, Canberra, ACT, Australia. *e-mail: p.a.goodwin@soton.ac.uk

The Paris Agreement1 aspires to restrict the rise in global mean 
surface temperature since the pre-industrial period to 2 °C 
or less for this century by reducing global carbon emissions, 

the principal driver of anthropogenic warming2. However, there 
are large uncertainties in how much carbon may be emitted before 
meeting a warming target3. For example, a subset of 13 Earth system 
models4,5 (from the Climate Model Intercomparison Project phase 5  
(CMIP5)) suggests that a 2 °C warming may be met by cumulative 
carbon emissions that range from 84 to 581 PgC from year 2017 fol-
lowing the Representative Concentration Pathway (RCP)6 8.5 (Fig. 1a  
and Supplementary Table 1). A large ensemble of simple climate 
model simulations7 obtained an even wider uncertainty range for 
the maximum permitted cumulative carbon emission to avoid a 
1.5 °C warming, which ranged from at least 250 to 540 PgC from 
year 2015 in 33% of their simulations (and extended even further 
from less than 200 to more than 850 PgC in 66% of their simula-
tions). Clearly, the large uncertainties in a permitted future carbon 
budget to meet specific warming targets need to be reduced.

In our view, a significant part of the large uncertainties in how 
much carbon may be emitted is due to discrepancies between model 
simulations and historical data. CMIP5 models are powerful tools to 
explore warming projections, solve the climate response to radiative 
forcing and provide emergent properties, such as the equilibrium cli-
mate sensitivity. However, there are mismatches between the CMIP5 
simulations and historical reconstructions; for example, model 
projections of surface temperature differ from historical records8–12 
(Figs. 1b and 2a (grey band)) with an average model–data mismatch 
of 0.2 °C (for the time-averaged temperature anomaly from the late 
nineteenth century time average and the period 1986 to 2005), and 
several models have too high a global ocean heat content from year 
1980 onward compared with observational reconstructions13–18  
(Fig. 1c). Such discrepancies with observation-based reconstructions 
introduce uncertainty into future warming projections, which could 
be biased towards either too much or too little warming.

Generating observationally constrained warming projections. 
Here we present a complementary approach to make twenty-first 
century projections of surface-warming projections, which is 
designed to minimize the model–data mismatch for the historical 
record. We exploit our theory for how warming connects to car-
bon emissions19,20 to drive an efficient Earth system model (the 
Warming, Acidification and Sea-level Projector21,22 (Methods)). 
Using geological evidence23 for the equilibrium climate sensitiv-
ity, we produced an ensemble of climate simulations that spans the 
uncertainty in observational reconstructions of warming8–12, ocean 
heat uptake13–18 and carbon fluxes2,24. Our approach is similar to the 
‘history matching’ approach applied to statistical emulators of com-
plex Earth system models25,26, except that here we use an efficient 
mechanistic Earth system model in place of a statistical emulator.

Our theory19,20 demonstrates how the global mean surface tem-
perature anomaly relative to the pre-industrial temperature at time 
t, Δ T(t), is related to cumulative carbon emissions, Iem(t) (PgC), and 
the weighted sum27–29 of radiative forcing from all forcing agents 
since pre-industrial times, ΔR t( )total

weighted  (W m−2), modified by the 
planetary heat uptake and the changes in ocean and terrestrial car-
bon inventories:
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where a =  5.35 ±  0.27 W m−2 is the CO2-radiative forcing coef-
ficient2, S (K (W m−2)−1) is an empirically determined30 climate 
sensitivity, N(t) (W m−2) is the planetary heat uptake, which 
effectively represents ocean heat uptake, Δ RCO2(t) (W m−2) is the 
radiative forcing from CO2, εN is a non-dimensional weighting 
(referred to as the efficacy) for ocean heat uptake30, IUsat (PgC) is 
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the global ocean undersaturation of dissolved inorganic carbon19 
with respect to instantaneous atmospheric CO2, Δ Iter (in PgC) is 
the cumulative change in residual terrestrial carbon storage since 
the pre-industrial period, and IB (PgC) is the pre-industrial buff-
ered carbon inventory of the global atmosphere and ocean sys-
tem19, of around 3,500 PgC. The climate sensitivity, S, is related 
to the equilibrium climate sensitivity, Δ T2×CO2, which defines the 
surface air temperature change for a sustained doubling of atmo-
spheric CO2, by S =  Δ T2xCO2/(a ln 2). In equation (1), the efficacy 
of ocean heat uptake, εN, accounts for how the heat uptake N(t) 
may have a different impact on Δ T(t) than an equivalent radia-
tive forcing from CO2, Δ RCO2(t) (ref. 30), whereas radiative forc-
ing from aerosols and non-well-mixed greenhouses gases may be 
weighted27–29 (with an efficacy, εi, that differs from 1), such that 

ΣεΔ = Δ + ΔR t R t R t( ) ( ) ( )i itotal
weighted

CO2
, where i sums over all other 

forcing agents, εi =  1 for well-mixed greenhouse gases and εi is 
referred to as εaero for aerosols.

Our efficient Earth system model21,22 exploits our surface warm-
ing relationship (equation (1)) to make climate simulations from the 
pre-industrial period and projections for the twenty-first century. 
The model assumes that the empirical parameters a, S, and IB, and 
the non-dimensional weightings εN and εi, are constant with time, 
and then applies these parameters within an eight-box representa-
tion of the atmosphere–ocean–terrestrial system21 (Methods). The 
model solves, with time, for the global surface temperature anom-
aly, Δ T(t), planetary heat uptake, N(t), carbon emissions, Iem(t), 
ocean carbon undersaturation, IUsat(t) and residual terrestrial car-
bon storage, Δ Iter(t), for the prescribed CO2 and radiative forcing 
pathways21,22 (equation (1) and Methods).

First, we used our efficient Earth system model to generate 108 
simulations integrated from year 1765 to year 2016, where each 
simulation has a unique set of 18 model parameter values that 
are varied independently between the simulations (Methods and 
Supplementary Table 2). The prior choices of the climate sensitivity, 
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Fig. 1 | Surface warming projections and ocean heat content anomalies. a, Global surface air temperature anomaly from 13 Earth system models relative 
to the late-nineteenth-century time average (Methods) from years 1861 to year 2100 following RCP8.5 (lines) versus cumulative fossil-fuel carbon 
emissions since year 2017. The dashed lines indicate when the projected warming exceeds 2!°C in cumulative fossil-fuel emission. b, Global surface air 
temperature anomaly relative to the late-nineteenth-century time average (Methods) versus time from three different data-based reconstructions and 13 
Earth system models from year 1950 to year 2016 (observations) and to 2020 (models) following RCP8.5 (lines). c, Historical reanalyses for global ocean 
heat content, ∆ Q (1021!J) over the full depth relative to 1971 from available observational analyses and reanalysis products, together with nine different 
CMIP5 model variants (lines). d, ∆ Q (1021!J) over the full depth relative to 1971 for nine different CMIP5 Earth system models (yellow shading) and the 
observation-consistent ensemble of our conceptual Earth system model simulations (blue shading) with projections up to year 2020. ∆ Q for NODC and 
Cheng et al.18 are for 0–2,000!m depth, whereas the others are full-depth. The grey shaded areas show the uncertainty for the heat content anomalies.
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S, and resulting equilibrium climate sensitivity, Δ T2xCO2, were taken 
from a frequency-density distribution of a geological reconstruction 
for the Cenozoic23 (about the past 65 Ma), with S ranging from 0.48 
to 1.96 K (W m−2)−1 and Δ T2xCO2 from 1.8 to 7.3 °C at 95% bounds 
(Fig. 3, black solid lines). This initial set of 108 simulations was then 
tested for consistency against observations (Supplementary Table 3),  
using nine observational constraints of historic warming8–12, ocean 
heat content13–18 (Supplementary Table 4) and carbon-flux recon-
structions2,24. Only 3 ×  104 simulations (0.03%) passed the full 
consistency test, and they formed our ‘realistic ensemble’ of simu-
lations that are consistent with historical records (Supplementary 
Table 3) and within uncertainty bounds for ocean heat uptake  
(Fig. 1c,d), surface warming (Figs. 1 and 2a (black line)), and ocean 
and terrestrial carbon uptake (Supplementary Fig. 1).

Second, the 3 ×  104 observation-consistent configurations of our 
efficient Earth system model were integrated forward from the start 
of year 2017 to year 2100 for atmospheric CO2, following standard 
RCP scenarios and including forcing of non-CO2 greenhouse gases 
and aerosols6 (Methods and Supplementary Table 3), and retained 
the historic uncertainty in radiative forcing from different sources 
(Supplementary Fig. 2).

Observationally consistent pathways towards warming targets. 
The observation-consistent simulations reach a surface temperature 
anomaly of 2 °C above the late nineteenth century average between 
years 2040 and 2052 for RCP8.5 (Fig. 2d, 95% confidence bands). 
Regarding other pathways, a 2 °C warming is only slightly delayed 
to between years 2045 and 2076 for RCP4.5 (Fig. 2c), whereas most 
simulations (93%) remain under a 2 °C warming by year 2100 for 
RCP2.6 (Fig. 2b). In comparison, the International Panel on Climate 

Change (IPCC) AR5 Earth system model ensemble suggests that a 
2 °C warming occurs within a much wider window between years 
2026 and 2063 for RCP8.5; in addition, 22% of the AR5 models sug-
gest that RCP4.5 might be sufficient to remain below a 2 °C warm-
ing target through the twenty-first century (compared with the less 
than 1% of simulations for our observation-consistent ensemble).

Next, we assessed the statistical likelihood of restricting surface 
warming to a maximum of 1.5 or 2.0 °C, in terms of the additional 
cumulative carbon emitted from the start of year 2017 (Fig. 4). For a 
given future cumulative carbon emission, our ensemble projections 
indicate that warming is ‘likely’ to be below a given target if at least 
66% of simulations agree (adopting AR5 terminology2). A surface 
warming of 1.5 °C remains likely until cumulative carbon emissions 
reach between 195 and 205 PgC from the start of year 2017 (Fig. 4a, b  
and Table 1). A surface warming of 2.0 °C or less remains likely until 
the cumulative carbon emission reaches 395 to 455 PgC from the 
start of year 2017 (Fig. 4a,c and Table 1). By the time cumulative 
carbon emissions reach 540 PgC from year 2017, more than 75% of 
the projections have a warming of 2.0 °C or more for both RCP8.5 
and RCP4.5. Assuming our current carbon emission rate24, the 1.5 °C 
warming target is likely to occur in 17–18 years and the 2 °C warming 
target is likely to be reached in 35–41 years. In comparison, by only 
allowing observation-consistent ensemble simulations, our range for 
the maximum permitted carbon emission for a 1.5 °C target is more 
restrictive than a recent large ensemble of climate model simula-
tions7, which instead suggested a higher possible permitted cumula-
tive carbon emission of at least 250 to 540 PgC from year 2015.

Reducing uncertainty in climate sensitivity and future warm-
ing. Our observationally consistent projections of a future surface 
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temperature anomaly make different underlying assumptions to 
those made for complex Earth system models2,5, and so the two 
approaches are complementary.

The CMIP5-based projections2,5, based on complex Earth system 
models, solve for the climate response and their emergent proper-
ties, which include climate sensitivity31–35 and the non-dimensional 
weightings of radiative forcings27–29 and heat imbalances30,36, εi and 
εN (equation (1)). Intermodel differences37 in their projections arise 
from differences in their emergent equilibrium climate sensitiv-
ity, and in how each model takes up heat and carbon, and non-
CO2 radiative forcing. However, there are differences between the 
CMIP5-based projections over the historical record and the obser-
vations (Fig. 1b,c).

In contrast, our projections are designed to lie within the uncer-
tainty bounds of the historical observations, including for warming 
and heat uptake. However, our projections require prior input dis-
tributions for model parameters, including climate sensitivity and 
the non-dimensional efficacy weightings, εi and εN, which are then 
held constant in time.

We then performed a set of perturbation experiments to test 
the robustness of our results with respect to the prior distribu-
tions of model parameters in the initial 108 simulations (Methods 
and Supplementary Table 5). These perturbation experiments use 
six alternative input distributions as the model parameters, includ-
ing an alternative geological distribution23 for climate sensitivity, S  
(Fig. 3, black dotted lines), and alternative distributions for the effi-
cacy of heat uptake, εN, the efficacy of aerosol radiative forcing, εaero, 
and the uncertainty in the radiative forcing from aerosols. These 
perturbation experiments support our inferences for projected 

warming from the default experiment (Fig. 4, compare the grey 
and blue lines (Supplementary Table 6)). Across all the perturba-
tion experiments for RCP8.5, the maximum cumulative emission 
at which 66% of the simulations remain under a warming target of 
1.5 °C only varied between 195 and 205 PgC and under a warming 
target of 2 °C only varied between 395 and 405 PgC from the start of 
year 2017 (Table 1).

Within our ensemble of observation-consistent simulations, 
both the variation in warming projections and posterior equilib-
rium climate sensitivity are correlated with the simulated values of 
multiple historical constraints (Methods, Supplementary Fig. 4 and 
Supplementary Table 8). Warming projections are the most corre-
lated to historic simulated temperature change (R2 =  0.2), but are 
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also correlated to simulated historic ocean heat uptake (R2 =  0.13), 
whereas the equilibrium climate sensitivity is most correlated to 
ocean heat uptake (R2 =  0.3) and then historic temperature change 
(R2 =  0.08). Thus, for the model projections to have any skill, recon-
structions of both historic surface temperature and ocean heat 
uptake are needed (Fig. 1b,c).

Climate sensitivity is a key model parameter in determin-
ing the projected warming within our ensemble (Methods and 
Supplementary Table 9). An improved posterior estimate of the cli-
mate sensitivity is obtained from our two-stage process of assuming 
a prior estimate from geological reconstructions and then updat-
ing by the observational-consistent simulations (Fig. 3). This pos-
terior estimate of equilibrium climate sensitivity lies between 2.0 
and 4.3 °C based on 95% of the observation-consistent ensemble of 
simulations (Fig. 3, blue and grey lines (Supplementary Table 7)). 
This posterior estimate is narrower than either of the prior distri-
butions from geological evidence23 (Fig. 3, black solid and dotted 
lines), and does not support the lowest values (from 1.5 to 2.0 °C) of 
the AR5 likely range2 for an equilibrium climate sensitivity of 1.5 to 
4.5 °C. This narrowing of the geological estimate23 for climate sensi-
tivity (Fig. 3) is interpreted as the historical constraints revealing the 
part of the climate sensitivity range for the entire Cenozoic23 that is 
applicable for the present day.

Implications for the Paris Agreement. The Paris Agreement1 aims 
to keep the global surface temperature anomaly within 2.0 °C of 
the pre-industrial one, and preferably close to 1.5 °C. Our analysis, 
using an observation-consistent ensemble of projections from an 
efficient Earth system model, is consistent with the observed trend 
between additional warming and cumulative emissions continuing 
into the future (Fig. 4a), and with previous studies that identified a 
near-linear link between warming and cumulative emissions19,38–40 
(Fig. 4a). Our projections suggest that a likely chance of meeting 
the 1.5 °C warming target requires that cumulative carbon emis-
sions remain below 195 to 205 PgC from the start of 2017, whereas 
a 2 °C warming target requires that cumulative carbon emissions 
remain below 395 to 455 PgC. The 1.5 and 2 °C warming targets 
are reached in 17–18 years and in 35–41 years, respectively, if the 
carbon emission rate is assumed to remain at its present-day value. 
Hence, immediate action is required to develop a carbon-neutral or 
carbon-negative future41,42 or, alternatively, prepare adaptation strat-
egies for the effects of a warmer climate.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41561-017-0054-8.
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Methods
The displayed CMIP5 Earth system model output. A range of Earth system 
CMIP5 model results are displayed in Figs. 1, 2 and 4 and Supplementary Fig. 1, 
and are taken from the Earth system models in Supplementary Table 1 (refs 43–51). 
Figs. 1a and 4a contain all 13 Earth system models. Figs. 1b, 2 and 4b each contain 
nine of the Earth system models: CanESM2, GFDL-ESM2G, GFDL-ESM2M, 
HadGEM2-CC, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM, MPI-ESM-LR and 
NorESM1-ME. Fig. 3c contains eight of these Earth system models (it excluding 
HadGEM2-CC).

The efficient Earth system model. For our efficient Earth system model, we 
use the Warming Acidification and Sea-level Projector (WASP)21,22. This model 
is integrated 100 million times with alternative parameter combinations to find 
simulations that agree with historic observational constraints (Supplementary 
Table 2). As configured in Goodwin21 and Goodwin et al.22, WASP lacks stochastic 
behaviour in the global surface temperature anomaly. However, the observational 
constraints for surface warming (Supplementary Table 3) represent both the 
underlying trends and internal stochastic variability in the climate system. 
Therefore, model simulations that accurately represent the underlying trends in 
historic surface warming but lack stochastic behaviour still may not be consistent 
with the observational constraints. To maximize the possibility of including 
model simulations that both accurately represent the underlying trends in surface 
warming and agree with observations, we employ an additional stochastic surface 
temperature anomaly in WASP, applied to global mean surface air temperature (T) 
and global mean sea surface temperature (SST).

As global temperature anomaly records are generally presented with a one-
month resolution8–12, we employed a monthly time-step in WASP (altered from the 
ten per year21,22). A stochastic temperature anomaly, Tstochastic (°C), was then inserted 
into surface air temperatures and SSTs using a noise distribution (AR(2) noise),

= − + − +T t c T t dt c T t dt c z t( ) ( ) ( 2 ) ( ) (2)istochastic 1 stochastic 2 stochastic 3

where δt is the one-month model time step, c1, c2 and c3 are non-dimensional tuned 
constants and zi is a randomly assigned temperature anomaly between − 1.0 and 
1.0 K. The coefficients c1, c2 and c3 are tuned such that the simulated monthly global 
surface temperature anomaly has similar amplitude and autocorrelation properties 
to the monthly GISTEMP record between years 1971 and 2016. This is assessed 
by removing the linear trend in the NASA GISTEMP9 monthly record from year 
1971 to year 2016 to reveal the autocorrelation properties and the amplitude, with 
the variability having a root mean square of 0.14 °C. For comparison, the first 
20 simulations accepted into the standard experiment observation-consistent 
ensemble using RCP8.5 considered from year 1971 to year 2016. With the linear 
trends in warming removed, the 20 simulations have an average root mean square 
amplitude variability of 0.13 °C, with a standard deviation of 0.04 °C between 
simulations, when using coefficient values tuned to c1 =  0.3, c2 =  0.4 and c3 =  0.062. 
These root mean square amplitude variability values of the 20 simulations are 
similar to the 0.14 °C value for the GISTEMP observations, and the simulations 
display similar autocorrelation properties.

Generating the observation-consistent model ensembles. A total of ten model 
ensembles are constructed, each of which contains ~3 ×  104 observation-consistent 
simulations. These ten model ensembles comprise four ensembles using a standard 
experimental set-up for each of four forcing scenarios, RCP8.5, RCP6.0, RCP4.5 
and RCP2.6, and a further six ensembles using alternative experimental set-ups 
that all follow the RCP8.5 scenario.

First, an initial prior ensemble21 of 108 model configurations is constructed 
by independently varying 18 model parameters with specified prior distributions 
(Supplementary Table 2 for experiment 1, and Supplementary Table 3 shows how 
this configuration is changed for the other experiments). These model 18 varied 
model parameters that represent the physical, chemical and biological properties 
of our efficient Earth system model. Each model configuration is then forced with 
historic CO2 and radiative forcing followed by RCP scenarios from Meinshausen 
et al.6. In each of the initial 108 simulations, the three radiative forcing terms, 
from CO2, other Kyoto agents (comprising well-mixed greenhouse gases other 
than CO2 and chlorofluorocarbons) and non-Kyoto agents (principally aerosols)6, 
are independently varied with normal distributions, such that the distributions 
in year 2011 approximate the uncertainty in the three radiative forcing terms as 
assessed by the IPCC2 (Supplementary Table 2). The radiative forcing from well-
mixed greenhouse gases other than CO2 and aerosols (and non-Kyoto agents) are 
both varied using scaling coefficients that apply over all time to each property 
respectively (Supplementary Fig. 2). The input distribution for the initial 108 
simulations for the climate sensitivity, S, is drawn from a probability distribution 
for the value of S in palaeoclimates assessed from a review of geological evidence 
over the Cenozoic23, using the distribution with log-normal uncertainty (Fig. 3, 
black solid lines).

At the end of year 2016, each of the 108 simulations are assessed using an 
observational-consistency test21,22 that covers nine observational constraints for 
surface warming8–12,52,53, ocean heat uptake13–18,54–57 and carbon cycle fluxes2,58–60 
(Supplementary Table 4). A simulation passes the observation-consistency test if 

either all nine simulated properties lie within the observed ranges (Supplementary 
Table 3), or if the total fractional sum of discrepancies from the observational 
ranges, δerror, is less than 0.1. The fractional sum of discrepancies term, δerror, is 
calculated from a summation over all observational constraints for which the 
simulated value lies outside the observational range (Supplementary Table 4) using:

∑δ Δ=
−

−
⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

x y
1 (3)

i i

yi
error

where xi is the simulated model value, yi is the midpoint of the observational 
constraint range, Δ yi is the observation-consistent range in the observational 
constraint (that is, from the minimum to maximum value in Supplementary  
Table 4) and δerror is summed only over those i constraints for which xi lies outside 
the observational consistent region, yi ±  0.5Δ yi. This inclusion of simulations in the 
final posterior distribution provided δerror <  0.1 (equation (3)) allows some tolerance 
for simulations to be considered observationally consistent, and so removes 
potential bias that might arise from applying artificially narrow observational 
constraints when selecting the final model ensemble.

In the standard experiment, the prior input distribution for the efficacy of heat 
uptake εN is normal, with the mean and standard deviation from the distribution 
of 16 CMIP5 models analysed by Geoffroy et al.36 (Supplementary Fig. 3 and 
Supplementary Table 2), whereas the prior input distribution for the efficacy of 
aerosol radiative forcing εaero is uniform, ranging from 0.33 to 3.0 (Supplementary 
Fig. 4 and Supplementary Table 2). However, the posterior distribution of εaero sees 
values concentrated towards one, whereas the posterior distribution of εN stays 
close to the prior input distribution from CMIP5 models (Supplementary Fig. 3).

Perturbation experiments are conducted with different input parameter 
distributions (Supplementary Table 5). For all the experiments except experiment 7,  
only 0.03% of the initial ensemble simulations pass the observation-consistency 
test, to produce a final observation-consistent ensemble of 3 ×  104 simulations. This 
observation-consistent ensemble displays good agreement with the full ranges for 
all the observational quantities (Supplementary Table 4), which demonstrates that 
the 3 ×  104 simulations have a good coverage of observational parameter space. For 
experiment 7, 0.08% of the initial ensemble passes the observation-consistency test, 
and thus requires only 4 ×  107 initial simulations to produce ~3 ×  104 observation-
consistent simulations. This reduction in the number of simulations required 
is because any given simulation is more likely to be observationally consistent 
when εaero =  1 (Supplementary Fig. 3, which shows peak value in the posterior 
distribution of εaero in the standard experiment).

Generating the observational-consistency test. The observational constraint 
ranges follow the 90–95% confidence interval for each property and where a 
single constraint is based on multiple records, the allowable range is widened 
to encompass the confidence ranges of each observational record. The nine 
observational constraints in the observational -consistency test are listed in 
Supplementary Table 3. The ocean heat uptake constraints are based on the 
observational records in Supplementary Table 4. To generate the limits of the  
ocean heat uptake constraints, we consider the range from the minimum to 
maximum of the individual observation reconstructions, including the 2σ 
uncertainty (Fig. 1c,d).

The surface air temperature constraint from years 1850–1900 to 2003–2012 is 
the estimated 90% confidence range from AR5 (ref. 2). The surface air temperature 
constraints from years 1951–1960 to 2007–2016 and 1971–1980 to 2007–2016 are 
based on the HadCRUT4, GIST

EMP and NCDC records8–12. The 2σ error in the decadal temperatures from the 
HadCRUT4 record is estimated at ± 0.05 °C from 1950 to the present8, whereas the 
2σ error in the annual GISTEMP record is also estimated at ± 0.05 °C (ref. 10).  
Therefore, we estimate a 95% confidence range in the surface air temperature 
constraints from 1951–1960 to 2007–2016 and from 1971–1980 to 2007–2016 
by allowing an additional ± 0.05 °C relative to the minimum and maximum of 
the HadCRUT4, GISTEMP and NCDC records, noting that the HadCRUT4 
and GISTEMP records represent the minimum and maximum values for both 
constraints, respectively.

The SST constraint from years 1850–1900 to 2003–2012 is based on the average 
of the HadSST3 (accessed from https://crudata.uea.ac.uk/cru/data/temperature/ on 
19 January 2017)53 and NCDC ERSST (accessed from https://www.ncdc.noaa.gov/
monitoring-references/faq/anomalies.php on 19 January 2017)53 records, but with 
± 0.06 K uncertainty to mimic the 90% confidence uncertainty in global surface air 
temperatures over the same period from AR5. The ocean and terrestrial carbon-
uptake constraints derive from AR5 assessments2.

Calculation of global surface temperature anomalies. The Earth system model 
temperature anomalies are calculated relative to the 1861–1900 period. The 
observational temperature anomalies are calculated relative 1850–1900 for the 
HadCRUT4 record, and relative to 1880–1900 for the NCDC and GISTEMP 
records (which begin in 1880). For the efficient Earth system model, the surface 
temperature anomaly is calculated relative to the simulated 1850–1900 time 
average separately in each simulation, except for Supplementary Fig. 4 and 
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Supplementary Table 8 in which the temperature anomaly is calculated relative the 
pre-industrial steady state of the model before radiative forcing is imposed.

Code availability. The computer code for our efficient Earth system model, 
the Warming Acidification and Sea-level Projector, is available within the 
supplementary material for this manuscript.

Data availability. Data that supports this study has been deposited in the British 
Oceanographic Data Centre published data library database (dataset title: 
“Observation consistent warming projections for 2081–2100 from the WASP 
model for the RCP4.5 scenario, and the corresponding earth system properties”). 
All other data that support this study are available within the supplementary 
material of this manuscript.
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