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Abstract

Climate sensitivity represents the global mean temperature change caused
by changes in the radiative balance of climate; it is studied for both
present/future (actuo) and past (paleo) climate variations, with the former
based on instrumental records and/or various types of model simulations.
Paleo-estimates are often considered informative for assessments of
actuo-climate change caused by anthropogenic greenhouse forcing, but
this utility remains debated because of concerns about the impacts of
uncertainties, assumptions, and incomplete knowledge about controlling
mechanisms in the dynamic climate system, with its multiple interacting
feedbacks and their potential dependence on the climate background state.
This is exacerbated by the need to assess actuo- and paleoclimate sensitivity
over different timescales, with different drivers, and with different (data
and/or model) limitations. Here, we visualize these impacts with idealized
representations that graphically illustrate the nature of time-dependent
actuo- and paleoclimate sensitivity estimates, evaluating the strengths,
weaknesses, agreements, and differences of the two approaches. We also
highlight priorities for future research to improve the use of paleo-estimates
in evaluations of current climate change.
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1. INTRODUCTION

Studies of past and future climate change often center on some climate sensitivity to changes in the
radiative balance of the Earth. This sensitivity appears in many guises. The equilibrium climate
sensitivity (ECS) is the equilibrium global annual mean temperature rise caused by a doubling of
atmospheric CO; concentration (Charney et al. 1979, Knutti & Hegerl 2008, IPCC 2013, Forster
2016, Stevens et al. 2016) or a radiative forcing of approximately 3.7 W m=2 (Myhre et al. 1998,
Byrne & Goldblatt 2014, Etminan et al. 2016), which can be further amplified or dampened by
several feedbacks within the climate system acting on many different timescales (e.g., von der
Heydt et al. 2016). The amount of global annual mean temperature change in response to a given
change in Earth’s radiative balance is called either the climate sensitivity parameter or the specific
climate sensitivity (in K W=! m? or °C W~! m?). The transient climate response is the global
annual mean temperature rise at the time of CO; doubling, which arises from a linear increase
(1% y~1) in CO; forcing over a period of 70 years IPCC 2013).

Regardless of which definition or timescale is considered, the response (or sensitivity) of climate
(or temperature) to a perturbation in the radiative balance (or forcing) is an important metric for
evaluating the potential outcomes of anthropogenic impacts on the radiative balance, such as
greenhouse-gas releases, land-use changes, and aerosol emissions. The radiative balance, in turn,
represents the sum of radiative forcings and feedbacks (where the latter occur over a wide range of
timescales) (Figure 1), which collectively determine the surface temperature on Earth. Feedbacks
are commonly categorized as fast (when acting within less than 100 years) or slow (when acting
over longer timescales), although this timescale-based distinction is somewhat blurry in reality
(see overview in PALAEOSENS 2012) (Figure 1).

Attempts at constraining climate sensitivity have been made throughout the past century and
earlier, and despite advances in our understanding of the physical processes that govern Earth’s
climate, the estimates have not changed much from the very earliest ones (Arrhenius 1896,
Callendar 1938, IPCC 2013, Stevens et al. 2016). Current estimates of climate sensitivity re-
main within a 66% probability range of 1.5-4.5 K (Charney et al. 1979, IPCC 2013, Stevens et al.
2016). But research into this climate metric has intensified in recent years, notably because of
increasing concerns about our future global warming trajectory and implementation of mitigation
strategies (Mann 2014). Climate sensitivity has been extensively investigated in studies that link
observations and modeling both for past (paleo) climates (e.g., Lunt etal. 2010) and for the modern
climate with projections into the future (e.g., Fasullo & Trenberth 2012, Sherwood et al. 2014).
Another intensive branch of research estimates climate sensitivity directly from paleoclimate re-
constructions (Hansen & Sato 2012, PALAEOSENS 2012, Skinner 2012, Royer 2016, von der
Heydt et al. 2016). An emerging property of recent investigations into present-day ECS is some
apparent nonlinearity or climate-background-state dependence (Knutti & Rugenstein 2015). In
the typical approach to calculating ECS—extrapolating transient climate simulations following an
abrupt doubling of CO; (i.e., 2 x CO,) to the point when the surface temperature change becomes
zero—it turns out that a linear relationship is not the best approximation (Bloch-Johnson et al.
2015) and that the so-called fast feedbacks are still changing after more than 150 years (Rugenstein
et al. 2016b). These are key issues for further research. In addition, there is interest in better un-
derstanding climate sensitivity and the forcing and feedback processes that control Earth’s climate
through past episodes of climate change, such as the Plio-Pleistocene glacial-interglacial cycles
and earlier Cenozoic events and sustained episodes of global warming. In this field, potential state
dependence is also a key focus.

Paleoclimate data can be used to evaluate climate sensitivity in several ways, including
(@) analyzing time series of the recent past, such as the last millennium (Hegerl et al. 2006);
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(b) comparing the present (preindustrial) with specific time slices, such as the Last Glacial Maxi-
mum (Hansen etal. 1984, Schneider von Deimling etal. 2006, Schmittner et al. 2011) or Cenozoic
intervals that were warmer and had higher-than-preindustrial atmospheric CO; concentrations
(Pagani etal. 2010, Hansen et al. 2013b, Anagnostou et al. 2016); and (¢) studying multiple climate
cycles, such as the repeated alternation between glacial and interglacial periods that characterized
the Pleistocene (Hansen et al. 2007, Rohling et al. 2012, von der Heydt et al. 2014, Kohler et al.
2015, Friedrich et al. 2016) and the Pliocene (Martinez-Boti et al. 2015). These approaches suffer
from relatively large uncertainties that are inherent to the use of proxy data, owing to a shortage of
globally distributed data sets of past temperature changes that span the desired timescales and from
problems in obtaining consistent chronologies for the various time series of climate forcing and
responses. Regardless, climate sensitivity estimates from paleoclimate data have the merits of being
based on real data, thus including all known and unknown feedbacks, and being calculated through
a full range of climate states, including those colder and warmer than the preindustrial state.
Climate sensitivity to changes in climate forcing depends on numerous response (feedback)
processes—all with their own (uncertain) timescales (Figure 1) and (uncertain) relative radiative
contributions, or efficacies (Hansen et al. 2005, Bony et al. 2006). The conceptual background has
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Figure 1

Timescales of processes involved in climate sensitivity. Based on a synthesis in PALAEOSENS (2012).
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been previously discussed in relation to both modern/future (actuo) climate change and paleocli-
mate change (e.g., Charney etal. 1979; Hansen etal. 1984, 2005, 2007, 2008, 2013b; Skinner 2012;
Marvel etal. 2016; von der Heydt etal. 2016). PALAEOSENS (2012) synthesized discussions and
mathematically evaluated relationships.

Here, we outline the PALAEOSENS (2012) framework and consider its implications and chal-
lenges. We then formulate some simple, purely theoretical, graphical representations to illustrate
and evaluate the nature of the probability distributions for climate sensitivity in response to anthro-
pogenic forcing and through episodes of climate change in the paleoclimate record. We use these
schematic representations to investigate how climate sensitivities from actuo- and paleo-studies
can best be assessed to make them comparable to one another. Finally, we consider implications of
the results for the potential of narrowing down the climate sensitivity range and/or its dependence
on climate background states.

2. FRAMEWORK

PALAEOSENS (2012) outlined an approach that uses reconstructions of key climate parameters
in the geological past to approximate the equilibrium fast-feedback climate sensitivity term that
applies to actuo-climate studies (8%, i.e., the ECS calculated when all fast feedbacks and surface-
ocean warming have completed). The main issue that needed to be addressed in aligning climate
sensitivity estimates from paleoclimate studies with those from actuo-climate studies concerns
the contrasting timescales involved—natural climate change is much slower than anthropogenic
climate change (Crowley 1990, Zeebe et al. 2016). Natural change therefore includes the action of
feedbacks that are too slow to be relevant over the next 100-200 years and/or relate to processes
that are not (yet) included in climate models owing to computational limits (e.g., continental ice
sheets).

One way to address this issue uses the so-called time-dependent climate sensitivity approach,
which accounts for both fast and slow feedbacks and allows evaluation of climate sensitivity con-
tinuously over timescales that are relevant to both the imminent future and the distant geologic
past (Zeebe 2013). It builds on the notion that fast and slow feedbacks operate continuously in the
climate system, thereby modulating the evolution of climate and its sensitivity to forcing through
time. In this time-dependent climate sensitivity approach, the fast-feedback climate sensitivity is
set (to 3 K), whereas the evolution of the slow feedbacks (carbon cycle, vegetation, low-latitude
glaciers, and polar ice sheets) is modeled using constraints from the paleoclimate record. The
strength of this approach for future climate projections lies in the comprehensive estimates of
anthropogenic warming (and its duration) that it delivers. For example, it accounts for the im-
pacts of warming on the solubility of CO; in the ocean, which further enhance global warming
by increasing atmospheric CO, concentrations (Zeebe 2013). Note that this approach relies on
a linearization of the climate response around the background climate and applies only to cases
where the climate system (after a very long time) reaches a unique and true equilibrium. In reality,
the climate system may instead () exhibit variability on many different timescales (interannual to
orbital), with potentially different characteristics under CO, forcing, and (b) cross tipping points
that imply highly nonlinear climate responses (e.g., Drijthout et al. 2015).

Another approach, which has been more extensively applied, explicitly resolves radiative forc-
ing caused by the slow-feedback processes (e.g., ice-sheet albedo, vegetation albedo, and/or
greenhouse-gas concentrations) and then removes their influences from the calculated climate
sensitivity (Hansen et al. 2007, Kohler et al. 2010, Masson-Delmotte et al. 2010, PALAEOSENS
2012, Rohling et al. 2012, Martinez-Boti et al. 2015). PALAEOSENS (2012) proposed the pa-
rameter SP for paleoclimate sensitivity in terms of temperature change relative to forcing resulting
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only from CO; change, which is equivalent to their specific climate sensitivity term Sicoz) [also
named Earth system sensitivity (ESS) by Lunt et al. (2010)]. Similar specific climate sensitivity
terms can be formulated relative to other (combinations of) slow-feedback processes, e.g., relative
to changes in CO, and land ice (Sicoz,11) or to changes in overall greenhouse-gas levels, land-ice
albedo, and vegetation albedo (Sigue,1va)). Conceptually, the PALAEOSENS (2012) approach
assumes that SP can be “corrected” for all processes that are either slow (conventionally taken to
mean acting over more than 100 years) or not included in models, such that one ends up with an
approximation of §*. The subscripts then identify the slow feedbacks that are corrected for—or,
in other words, those that are effectively considered to be climate forcings. This is a pragmatic
approach that requires knowledge about the radiative impacts of all processes at any moment in
the past, which then becomes the real challenge. Here, we evaluate the comparability between
actuo and paleo examples, following the PALAEOSENS (2012) approach of focusing on specific
radiative contributions of the various processes, because this approach can be illustrated relatively
easily in graphical examples.

In more specific terms, PALAEOSENS (2012) argued that the observed relatively low rates
of temperature change imply that the climate remained close to equilibrium in the preindustrial
past. In general, global annual mean temperature changes are small relative to the 288 K (15°C)
absolute temperature of Earth’s surface. Temperature change (warming) over the past several
decades amounts to between 0.01 K y~! (IPCC 2013) and 0.015 K y~! (Hansen et al. 2010).
During Pleistocene deglaciations, it was an order of magnitude slower (Masson-Delmotte et al.
2010, Shakun et al. 2012, Friedrich etal. 2016, Snyder 2016), and during the dramatic onset of the
Paleocene-Eocene Thermal Maximum, 56 Mya, rates of global warming were somewhere between
those two values (Zachos etal. 2006, Zeebe etal. 2009, Kemp etal. 2015). Today, climate is affected
by an external forcing (notably greenhouse-gas release) that is increasing faster than all but the
fastest climate processes can respond. Thus, the climate remains in a state of disequilibrium until
sufficient time has elapsed for the slower processes to adjust, where completion of centennial-scale
surface-ocean heat uptake is commonly used to denote equilibrium. Indeed, the energy imbalance
caused by ocean heat uptake is widely used as a measure of the overall disequilibrium state (e.g.,
Hansen et al. 2011, 2013a,b, 2017). During most of the preindustrial past, climate feedbacks
were close to equilibrium with the global temperature, given that these processes themselves were
driving the climate changes.

For close-to-equilibrium changes in the past, the radiative impacts of the global mean external
climate forcings (negligible annual mean global insolation changes), slow feedbacks (including
carbon-cycle processes), and fast feedbacks must have been almost, if not precisely, balanced.
Hence, AR; + AR ~ 0, where AR stands for radiative change, “sf” stands for the sum of
all (slow-feedback) forcings, and “ff” stands for the sum of fast feedbacks (for more detail, see
PALAEOSENS 2012, von der Heydt et al. 2014, von der Heydt & Ashwin 2016). Thus, for a
given (small) temperature change, AT, the equilibrium fast-feedback climate sensitivity parameter
S*= AT/ AR may be approximated by Sis; = AT/ ARs). Estimates following this approach
throughout the Cenozoic consistently fall within a distribution of approximately 0.3-1.9 or 0.6
1.3 KW m? at 95% or 68% probability, respectively (Kshler et al. 2010, Masson-Delmotte
et al. 2011, PALAEOSENS 2012, Rohling et al. 2012, Martinez-Boti et al. 2015, Anagnostou
et al. 2016, Friedrich et al. 2016). The latter scales to a warming of 2.2-4.8 K per doubling of
atmospheric CO, concentrations, in agreement with IPCC (2013) estimates.

A major question that remains open is whether this distribution reflects (#) reconstructed
climate sensitivity values that are scattered randomly through the range that is determined (i.e.,
random uncertainty) or (b) more likely, a combination of different, narrower paleoclimate sensitiv-
ity ranges from different time periods, and in particular from different climate background states,
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which would therefore represent a systematic source of uncertainty (see also Stevens et al. 2016,
von der Heydt et al. 2016). Indeed, model-based process studies and theoretical considerations
drive an expectation that the value of climate sensitivity should depend on the prevailing climate
background state, because contributing feedback processes may become more or less effective
(i.e., their efficacies may change) under different background climate conditions (for attempts to
define different types of state dependence, see, e.g., Crucifix 2006, von der Heydt et al. 2016).
Recent work (von der Heydt et al. 2014, 2016; Kohler et al. 2015) suggests that state depen-
dence may be detectable with model-based interpretation of the data, but the matter has not been
conclusively resolved owing to uncertainties involved in the data and the (chronological) compar-
isons between records. In detail, the state dependence identified by Kohler et al. (2015) resulted
mainly from calculation of the land-ice albedo radiative forcing, ARy1y, based on deconvolution
of the global deep-sea benthic oxygen isotope record with three-dimensional ice-sheet models.
Another, relatively minor contribution resulted from the latitudinal dependence of changes in
incoming insolation, I. Combined, these drove a nonlinear relationship between ARy and sea
level. Earlier approaches used simpler one-dimensional ice-sheet models (van de Wal et al. 2011),
did not similarly account for the latitudinal dependence of I (Kéhler et al. 2010, PALAEOSENS
2012), or approximated ARy as a linear function of sea level (Hansen et al. 2008, Martinez-Boti
et al. 2015) and therefore were primed to miss the state dependence detected by Kohler et al.
(2015). More recently, Friedrich et al. (2016) found a similar state-dependent, nonlinear rela-
tionship between global temperature and radiative forcing anomalies over the last 784,000 years.
Briefly, they determined global annual mean temperature variations using a combination of proxy
reconstructions from marine sediment cores and simulation results from an Earth system model
of intermediate complexity. The latter was also used to characterize the planetary albedo through
the last 784,000 years by simulating the radiative impacts of ice sheets, continental shelf inun-
dation/exposure, and vegetation cover. The greenhouse-gas forcing was quantified from ice-core
records. Finally, Friedrich et al. (2016) detected climate sensitivity and its state dependence from
the local slope of the temperature versus radiative forcing regression, similar to previous studies
(e.g., Kohler et al. 2015).

A key cause of state dependence of climate sensitivity—especially with respect to slow
feedbacks—concerns changes in the efficacy of one or more of these feedbacks under different
climate states, meaning that the radiative contribution of these processes changes through time.
For example, a similar unit area of ice has a stronger radiative impact at lower latitudes than at
higher latitudes owing to greater amounts of incoming radiation per unit area as the equator is ap-
proached; i.e., the efficacy of the ice albedo feedback may be noticeably stronger for lower-latitude
ice than for higher-latitude ice. This notion has implications for paleoclimate sensitivity studies
that consider both maximum and intermediate glaciation states. In another example, large-scale
clustering of continental mass at low latitudes in the Neoproterozoic supercontinent of Rodinia is
thought to have amplified the difference between continental reflection and sea-surface absorption
of incoming solar radiation relative to distributions with more continental mass at higher latitudes,
which facilitated major global cooling that eventually led to Snowball Earth (Kirschvink 1992),
although this influence remains contested (Poulsen et al. 2002). State dependence of climate sen-
sitivity may also result from less obvious changes that—in particular for fast feedbacks—are not
necessarily well approximated in terms of efficacy changes. Among these, variations in cloud cov-
erage and types are among the least understood parameters in paleoclimate studies, even though
they likely exerted a major control on both albedo and retention of outgoing long-wave radiation
(e.g., Bony et al. 2015, Zhou et al. 2016).

So far, it is virtually impossible to develop a comprehensive view of past efficacy changes for
most feedbacks, which complicates the reconstruction of state dependence in paleodata-based
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studies. A pragmatic solution is therefore needed. One approach assumes constant efficacies for all
feedbacks and then assesses whether calculated ECSs appear to have been constant or variable with
climate background state. Any inferred variations subsequently become targets for investigating the
potential variability of feedback efficacies. Alternatively, hybrid approaches are possible, in which
feedback efficacies through time are assessed with climate models. But this technique introduces
potential model bias into the primarily observation-based estimates, meaning that subsequent
comparisons with model-based results become somewhat circular.

In the next section, we use highly idealized examples to graphically illustrate (#) the controls on
paleoclimate sensitivity probability distributions, () the limitations resulting from data availability
issues that affect approximations of S* using Sj in paleodata-based studies, and (c) how state
dependence caused by temporal changes in feedback efficacy may factor into the reconstructed
probability distributions.

3. ACTUO-CLIMATE VERSUS PALEOCLIMATE SENSITIVITY

As a first step toward more precise assessments of climate sensitivity, PALAEOSENS (2012)
advocated strict adherence to specific definitions to avoid conflating information that applies
over different timescales and different climate background states, as tends to occur in broadly
generalized approaches (Pagani etal. 2010, Snyder 2016). However, although the PALAEOSENS
(2012) framework may ensure like-for-like comparisons, it still involves choices and assumptions
that may affect the outcome (e.g., Skinner 2012). As a consequence, climate sensitivity is more
a moving target than a unique fixed number, depending on the choices and assumptions made
and the timescales and climate background states over which it is considered. In addition, from
the point of view of dynamical systems theory, climate sensitivity is more likely a probability
distribution than a single number (von der Heydt & Ashwin 2016), where the distribution arises
not from randomness or observational errors but from the actual climate-system dynamics that
exhibit state-dependent behavior through their fast-feedback processes. Thus, pertinent questions
remain about the extent to which a determination of S5 may provide insight into the $* that is
relevant to anthropogenic forcing. We explore this with simple, schematic, idealized graphic
example scenarios.

In contrast to most modeling approaches to climate sensitivity, we consider here a
time-dependent climate sensitivity S() to reflect both the short-term variations and longer-
term background-state dependence of S. We follow the general principles laid out above
(PALAEOSENS 2012), where S is determined by the radiative balance of the planet and dif-
ferent feedbacks enhance or dampen the initial temperature response:

AT -1
AR ap+ Y M+

i=1"i

Here, the A terms refer to the strength of different feedback processes (in terms of a feedback factor,
in W m~2 K1), sorted by the timescale on which they act: Ap reflects the change in long-wave
radiation in the absence of other feedbacks (the so-called Planck feedback), and the superscripts “f”

and “S”

denote N fast-feedback and M slow-feedback processes, respectively. Note that Equation
1 includes the sum of slow feedbacks (the third term in the denominator), which is the version
applicable for calculating paleoclimate sensitivity in the PALAEOSENS (2012) framework. For
actuo-climate sensitivity, that sum of slow feedbacks is omitted from the denominator.
Generally, feedback factors are assumed to be constant. However, to reflect the state depen-
dence of feedbacks, a time-dependent climate sensitivity, S(¢), results from the fact that both Af

and A° can be time dependent. For example, the state dependence of fast-feedback processes as
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inferred between glacial and interglacial periods (von der Heydt et al. 2014) may be represented by
a (long-timescale) variation of A(?). The different response times in all feedback factors can be re-
flected by a delayed growth of the feedback factors for those processes with slower timescales. The
first details in this direction were published by Zeebe (2013), who assumed that the slow-feedback
processes, A*, grow from zero to their full strength after a certain time delay.

We adopt a similar approach, with a focus on changes in the time domain. However, our
schematic scenarios build up the argument in terms of simple prescribed functions for the radiative
contributions (AR) from the various processes, rather than in terms of feedback responses. We did
this because we aim to graphically compare actuo- and paleo-scenarios, and for paleo-scenarios
the data more directly resolve AR contributions (Hansen et al. 2007, 2008; Kohler et al. 2010;
Masson-Delmotte et al. 2010; Rohling et al. 2012).

Our actuo-scenario (Section 3.1) and paleo-scenario (Section 3.2) represent processes that con-
trol changes in the radiative balance of climate by means of simple prescribed sigmoidal response
functions, with random, uniformly distributed uncertainty ranges that are evaluated in a Monte
Carlo-style approach of 1,000 separate instances. Each response function describes a schematic
time-dependent development of a radiative anomaly, in which a phase of exponentially increasing
growth from zero is followed (in a symmetrical manner through time) by a phase of exponen-
tially decreasing growth before settling at the stipulated maximum radiative impact of the process
considered. The various response functions are then summed up, giving a median record of total
radiative change over time and an uncertainty range based on percentile ranges across all Monte
Carlo instances. A rough scaling is worked out for each instance to calibrate the record of total
radiative change to one of total temperature change over time. This temperature record is then
used in a ratio relative to the records for component sums AR} and AR to estimate the implied
S* and Sjs, respectively.

Although our radiative response functions are simple prescribed functions rather than fully
interactive feedback processes, we aim to use reasonably realistic amplitude scalings (efficacies)
for the contributing radiative (feedback) processes in both the actuo- and paleo-scenarios, based
on published numbers for the modern climate and for Pleistocene glacial-interglacial cycles. We
emphasize that the scenarios may not be viewed as in-depth analyses because they do not com-
prehensively represent the interactive physics of the climate system. Including the latter would
deeply entangle the idealized results shown here and confound relationships between the various
climate sensitivity definitions and their underlying processes, which would make it more difficult
to visualize the potential impacts of issues such as limited data availability, unknown past pro-
cesses, and fundamental uncertainties. Our idealized example scenarios guide the discussion by
visualizing such impacts (Sections 4.1 and 4.2). Finally, given that our approach—which draws on
proxy-based paleo-reconstructions of radiative forcing anomalies (AR) to calculate temperature
change (AT) and climate sensitivity (S)—may be less familiar to climate modelers, we end the
discussion with an illustration of how the importance of the time domain might be addressed in a
feedback-focused analysis framework (Section 4.3).

3.1. Illustrative Scenario for Actuo-Climate Sensitivity

For the actuo-climate scenario, we consider that, for any given trigger (e.g., greenhouse-gas
emissions), a sequence develops of delayed temperature responses (indicated with §) and ra-
diative feedback responses (indicated with AR), all with their own timescales and amplitudes
(Table 1). Key responses to be taken into account are the direct warming effect of the emissions,
the associated outgoing long-wave radiation cooling response (Planck response), and other typical
very fast feedbacks, which include changes in water-vapor content, atmospheric lapse rate, and
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Table 1  Parameter values used in our idealized actuo-climate sensitivity scenario

Estimated duration Full range Full range
for full response () (¢, uniform Full amplitude (b) (ep, uniform
Description Code (years) distribution) (W m~2)2 distribution)

Direct responses, including ARy 1 +50% 2.2 +10%
vapor and cloud feedbacks

Aerosol and land-surface AR[AR) 10 +50% -1.2 +50%
feedbacks

Snow and sea-ice albedo ARqsst 20 +50% 0.4 +10%
feedback

Carbon-cycle feedbacks AR|cFB] 150 +50% 0.05 x ARy +50%

Surface-ocean temperature 3[s0) 150 +50% 0.55 +10%
equilibration

Continental ice albedo ARy 750 +50% 3 x (10/125) +50%
feedback

Deep-ocean temperature 3[DO) 1,500 +50% 0.55 +10%
equilibration

Vegetation albedo AR 500 +50% 0.05 x (AR[aE) + +50%

ART2))
Carbonate compensation AR 10,000 +50% —0.5 x (AR(cFp) + +50%
0.5 x AR[TZ])
Weathering ARwr 200,000" +50% —0.5 x (AR(crp) + +50%
0.5 x AR12])

"Values are set in relation to a total effective greenhouse-gas radiative forcing of 3.7 W m~2 with an associated negative aerosol and land-surface feedback
of —1.2 W m™? (see Figure 2). In addition, the impacts of carbonate compensation and weathering are arbitrarily set in a very simple manner to each
remove the forcing and immediate feedbacks related to half of the carbon emissions.

"The 10°-year timescale for weathering follows the findings of Lord et al. (2016).

cloud albedo. All of these operate quasi-immediately and are here rolled into one term that also
includes the impact of a single greenhouse-gas introduction within the first year (AR;r2)) because
separating these impacts is not needed for the simple scenarios considered. Table 1 summarizes
the parameters and their values in this scenario.

We scale the total of the initial forcing to 3.7 W m~? based on the sum of the modern effective
climate forcings for CO,, CHj, chlorofluorocarbons, N, O, and O; through 2015 (Hansen et al.
2017) (Figure 2). Note that this is different in nature—but confusingly similar in magnitude—to
common estimates given for the radiative forcing of a doubling of CO, concentrations. We assign
to this forcing a uniformly distributed uncertainty range of £10% to span the reported £0.3 W
m~? range of observations (Figure 2). We partition this 3.7 W m~? (£10%) in a simple manner,
into (#) a virtually instantaneous response of 60% (ARrz; = 2.2 W m™2) in the first year; (5) a
somewhat slower response of (arbitrarily) 10%, resulting from snow and sea-ice albedo adjust-
ment over a few decades (AR;ss;y = 0.4 W m~?); and (c) a delayed temperature response of 30%,
caused by surface- and deep-ocean heat uptake (8;so; + 8poj = 1.1 W m~2) (Table 1). The latter
is based on an observed cumulative ocean heat uptake of approximately 125 x 10*! J between 2000
and 2010 (IPCC 2013, Whitmarsh et al. 2015). We simply partition this 50:50 between the
surface and deep ocean, although in reality the observed [and supported by Coupled Model In-
tercomparison Project 5 (CMIP5)] cumulative ocean heat uptake over the industrial era is un-
equally distributed, with approximately 33 x 10?2 J in the upper 700 m of the ocean, 10 x 10?? J at
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2.1

surface albedo

Aerosols and

CFCs

CO, CH, N,O O,

Effective forcing (W m-2)

Figure 2

Estimated effective climate forcings (1750-2015) for our actuo-scenario. The forcings are based on
observations of each gas except for simulated CH4-induced changes of O3 and stratospheric H, O included
in the CHy forcing. Aerosols and surface albedo change are estimated from historical scenarios of emissions
and land use. Oscillatory and intermittent natural forcings (solar irradiance and volcanoes) are excluded.
CFCs include not only chlorofluorocarbons, but also all Montreal Protocol trace gases and other trace gases.
Uncertainty (for 5-95% confidence) is 0.6 W m~ for total greenhouse-gas forcing and 0.9 W m~2 for
aerosol forcing (Myhre et al. 2013). Data are from Hansen et al. (2005), updated to reflect the period
1750-2015 (see also Hansen et al. 2017).

700-2,000 m, and 7 x 10? J at greater depths (Gleckler et al. 2016). The final fast feedback consid-
ered, ARsr), involves the albedo impacts of aerosol and land-surface changes, with timescales of up
to a few decades. We scale AR|sg) to —1.2 W m~2 based on the effective climate forcing of aerosols
and surface albedo through 2015 (Hansen et al. 2017) and capture the reported uncertainties with
a generous, uniformly distributed uncertainty range of £50% (Figure 2, Table 1). Note that, by
including the present-day effect of aerosols, our approach is not easily comparable with general
circulation model-based results for ECS (typically obtained from 2 x CO, experiments), because
aerosol impacts are not commonly included in those simulations. But aerosols are an important
aspect of real-life climate change, and ignoring them would skew the results.

The fastresponses AR|12), ARsst, and ARjap) are followed by the influences of delayed surface-
ocean (upper 2,000 m) heat uptake (§so)) and carbon-cycle feedbacks such as permafrost and
wetland releases of methane (AR(crp;) over timescales of up to a few centuries. Even slower
responses then follow, related to deep-ocean (>2,000 m) heat uptake over a millennium or two
(8ipoy), albedo changes caused by large-scale reorganizations of vegetation that may occur over
many centuries (ARyg)), and multicentury to millennial-scale (Grant et al. 2014) continental ice-
sheet albedo adjustments (AR} 1j). The amplitudes of §s0; and §po; were discussed above, AR(crg
is arbitrarily set to 5% of AR;r2), and ARy is arbitrarily set to 5% of the sum ARtz + ARag)-
Both ARjcrp) and ARy are assigned uniformly distributed uncertainty ranges of £50%.

For ARy1y, we rely on suggestions that, as long as CO, levels remain well below approximately
750 ppm (DeConto & Pollard 2003), ice-sheet changes affect sea levels up to approximately
20 m above the present (Foster & Rohling 2013, Rohling et al. 2013, Gasson et al. 2016). We
use a median adjustment of 10 m of sea-level rise for our scenario, in agreement with peak val-
ues for the previous (Eemian) interglacial, when temperatures rose to around 1°C above present
(see discussions in Hansen et al. 2013a, 2017; Hoffman et al. 2017). Reconstructions for paleo-
scenarios imply that the radiative impacts of ice-sheet decay equal approximately 3 W m~2 per
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125-m-equivalent sea-level rise (Hansen et al. 2008, Kohler et al. 2010, Rohling et al. 2012).
There remains considerable uncertainty with this number; using three-dimensional ice-sheet
models, Kéhler et al. (2015) found it to be 4 W m~2, whereas Friedrich et al. (2016) reported
it to be only 1.5 W m~2, likely related to a smaller simulated albedo change between land-ice-
covered conditions and no-ice conditions relative to that used by Kohler et al. (2015). We use a
uniformly distributed uncertainty of £50% of ARy, to allow a uniform range between 1.5 and
4.5 W m~? for a 125-m-equivalent sea-level change, which spans the estimates in the literature.
Hence, we set the median ARy in the actuo-scenario to 3 x (10/125) W m~ for a sea-level
rise up to 10 m. We accept that use of this linear approximation of ARy from sea-level change
obscures a potentially important nonlinearity of the climate system, which may underpin a state
dependence in Sjco, 1y over the last 2 million years (Kohler et al. 2015).

For each process, the above-mentioned idealized signal-development curve uses the standard
functional form

(b +en)

ARG = s T

Here, 5 is the total signal amplitude (Table 1, with range as stated), 7 is time, 7 is the timescale of
full response (Table 1, with range as stated), ¢ is a translation constant (set to 0.5) to ensure that
signals start at #=0, and ¢ is an acuteness constant (set to 14) to ensure that full signal amplitude
is achieved over timescale . We run Equation 2 for each process in a Monte Carlo—style manner
(n=1,000), with random perturbations over the uniformly distributed uncertainty ranges to both
b and 7 (¢, and &, in Table 1). Note that we chose uniform distributions because the uncertainties
represent not so much standard random error distributions around a mean as ranges within which
parameter values may systematically shift (efficacy changes) in relation to changes in the climate
background state. We then add all instances up across all processes to yield the cumulative radiative
response and determine the median along with the 2.5th and 97.5th percentiles that delineate
the 95% probability bounds (Figure 3; note that, for clarity of presentation, probability bounds
are shown only for the cumulative total).

Next, we roughly scale the cumulative radiative response distribution, ARy (?), to a distribution
of total temperature change through time, A7(z) (Figure 3b), assuming a constant amount of
temperature change per W m~2 of radiative change, regardless of the process. A rough scaling is
sufficient because we are attempting not to model reality, but only to create a graphic illustration
scenario. Our approach scales each individual Monte Carlo instance’s sum of completed radiative
contributions by fast forcings and feedbacks (AR5 = AR12) + AR[ssij + ARax)) at the time point
of calibration (f,;, where all fast responses are completed) to a prescribed temperature change,
ATy In the actuo-scenario, AT, is randomly drawn from a normal distribution with a mean of
1°C and 1o of 0.1°C, in approximation of the current amount of global warming in response to
the net radiative change caused by forcing (greenhouse-gas emissions) and fast feedbacks (Hansen
etal. 2013a, 2017; IPCC 2013). This yields Swal = AT cal / ARt ccal, which in turn gives the time
series of temperature change using A7T(#) = ARy (f) X Scal, With propagation of all uncertainties
in the various AR terms and in AT, across all Monte Carlo instances (Figure 35).

We now have AR(¢) and AT(¢) (Figure 3a,b). This allows estimation of the time-dependent
climate sensitivity parameter S(t) = AT(t) / AR () (Figure 3c¢). Because AT{(z) develops in re-
sponse to the action of all forcings and feedbacks [ARq () = AR () + ARsq(2)], whereas S(7)
depends only on AR (#), the reconstruction of S(z) continues to vary after completion of the
fast processes. The conceptual equilibrium value S* is achieved when surface-ocean warming has
completed, whereas slow feedbacks have not yet become important (PALAEOSENS 2012); there-
fore, §* is best identified at #=200 years in our scenario. Its range reflects the propagation of all
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uncertainties in all input variables, and we constrain 95% probability bounds using 2.5th and
97.5th percentiles across all 1,000 instances. Figure 4 shows histograms for S$°.

However, there is a complication. By #=200 years, the scenario’s relatively rapid carbon-cycle
feedbacks (ARcrp)) have come into play. This illustrates the complexity of using a stationary
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Figure 4

Histograms for our actuo-scenario. The various curves are determined at =200 years for $* and as the average of 1,000 < ¢ <
3,000 years for S™*, as indicated in Figure 3c.

definition to diagnose a complex, dynamic, and interconnected system. At =200, we therefore
read values of S* calculated with and without explicitly accounting for ARcrp) (see Figure 4).
Although possible in our simple scenario, explicitly accounting for AR|cpp) is difficult in reality
because it requires knowledge of the proportion of carbon derived from feedbacks relative to that
of anthropogenic external carbon input into the climate system. Hence, $* without rapid carbon
feedbacks (see Figure 4) is more relevant practically. The real climate system contains more such
processes, including changes in oceanic carbon uptake efficiency in response to changes in oceanic
temperature and carbon exchanges; our simple scenario illustrates the impacts of such issues but
is not all-inclusive.

S* at approximately 7= 200 years still does not reflect the actuo-scenario’s full development
in response to the initial forcing discussed above. Even without further external forcing, the
temperature continues to change (first increasing, then decreasing) because the impacts of slow
processes come into play. In our scenario, the key slow processes (5po), ARvq), and ARy reach
completion after approximately 1,000 years (for the land-ice-volume component in reality, this

Figure 3

Assessment of $? in our main actuo-scenario. (#) Relative radiative contributions per process (showing only
medians) and their total sum, along with 95% probability bounds, following the parameters outlined in
Table 1. The number of randomly perturbed (see Table 1) iterations is » = 1,000. Note that ARwr; is a
flat line at 0 W m™2 because it becomes important only at # > 100,000 years. The blue bar indicates the
time point of calibration (7, where all fast responses are completed). The parameters are indicated in the
legend as “XX” as shorthand for “AR|xx].” (b)) Total temperature development through time in relation to
the total radiative change given in panel ¢, along with 95% probability bounds. As in panel , the blue bar
indicates the time point of calibration (z,], where all fast responses are completed). (¢) Calculated S(7) along
with 95% probability bounds. For comparison, results are shown for two cases: one including carbon-cycle
feedback (AR[crp)) influences (b/ue) and one excluding these influences (red). The arrow on the left
indicates where S* is measured, and the two connected arrows on the right show the interval where the
SMaX estimate is taken.
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may be too fast, given that adjustment over ~3,000 years has been suggested by modeling studies;
Clark et al. 2016). From approximately # = 3,000 years, carbonate compensation becomes a player
as the first of the very slow Earth system responses (eventually also including silicate weathering)
that slowly remove the carbon. We portray the peak value of S(z) (here named S™) using the
distribution between #= 1,000 and #= 3,000 years (see Figure 4). If the AR5 adjustment time
were stretched to ~3,000 years (see Clark et al. 2016), S™ would be a narrower peak of similar
amplitude, centered on 7= 3,000 years.

3.2. Illustrative Scenario for Paleoclimate Sensitivity

Paleoclimate sensitivity is approached differently. It relies on quantification of the slow feedbacks,
notably those associated with carbon-cycle changes as expressed in greenhouse-gas records
(ARGHgy)), with continental land-ice albedo changes (AR 1), and with vegetation albedo changes
(ARa))- As outlined above, these slow feedbacks are effectively considered to be forcings, and
their sum (ARy) is used to approximate the sum of fast feedbacks (ARs). The development with
time in paleoclimate sensitivity is then estimated as Sy(f) = AT(#) / ARsq(t). Within that time se-
ries, equilibrium paleoclimate sensitivity is identified as Sy and is reached after all slow feedbacks
have reached completion. Table 2 summarizes the parameters and their values in this scenario.

Table 2  Parameter values used in our idealized paleoclimate sensitivity scenario
Estimated duration Full range (e, Full range (&,
for full response () uniform Full amplitude uniform
Description Code? (years) distribution) (h) (W m~2)b distribution)

Initial carbon-cycle AR[GHGI] TiGHGI] =50 +50% @ x2.5 +50%
(greenhouse-gas) feedbacks

Initial direct responses, including ART2;) TiGHGH) + 1 +0.5 years @ %3 +50%
vapor and cloud feedbacks

Initial snow and sea-ice albedo AR[ssTy) TiGgHGi + 20 +10 years @ x2 +50%
feedback

Initial aerosol and land-surface AR|AE] TiGHGi + 10 +5 years px1.5 +50%
feedbacks

Continental ice albedo feedback AR 7Ly = 6,000 +50% 3 +50%

Snow and sea-ice albedo feedback | AR|ssiy Ty + 20 +10 years (1—-¢)x2 +50%

Carbon-cycle (greenhouse-gas) AR|GHGr] T(ssy + 200 +100 years (1 —¢)x2.5 +50%
feedbacks

Direct responses, including vapor AR TiGHG) + 1 +0.5 years (1 —¢)x3 +50%
and cloud feedbacks

Aerosol and land-surface AR|AEy Ty + 10 +5 years (I —¢)x1.5 +50%
feedbacks

Vegetation albedo ARVGr Ty + 500 =+ 50 years 1 +50%

*Forcing amplitudes are based on a typical deglaciation within the late Pleistocene glacial cycles, as discussed by Kohler et al. (2010) and Rohling et al.
(2012). Our scenario apportions values to fast-feedback contributions within a total ARg that is held proportional to the total of slow-feedback
contributions, ARy, following the PALAEOSENS (2012) framework. The radiative subdivisions for the various fast feedbacks are irrelevant and used
here only for illustration. For ARGHG], AR[T2], AR[ss1, and AR[E), we incorporate a schematic representation of an initial rapid response to the onset of
deglaciation (indicated in the code with “i”) and a second, remaining component (indicated in the code with “r”) that is delayed as it coevolves with
ice-volume reduction.

bThe proportion of the initial responses is set by factor ¢, which we tentatively set at 0.15; initial responses are set to start with initial carbon-cycle
responses within 25-75 years after the initial (orbital insolation) perturbation. Changing these values does not materially affect our conclusions.
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Conceptually, no immediate agreement might be expected between actuo- and paleoclimate
sensitivity estimates because they are determined from processes operating over very different
timescales, with different assumptions and uncertainties. For example, past climate variations
were not adjustments to very rapid, high-amplitude perturbations (such as the anthropogenic CO,
emissions) along the lines of actuo-climate adjustments, but were triggered by slowly developing
processes such as orbital forcing, with timescales of many thousands of years. Hence, paleoclimate
records reflect coevolving changes in all climate-regulating processes (save for the very slowest
ones, such as plate tectonics) that are either in or near equilibrium with the changing forcing. As a
consequence, most studies based on time series of temperature and slow-feedback change directly
find the equilibrium value Sy, although this may not be true in highly resolved studies over
centennial-to-millennial-scale climate fluctuations (see below). In addition, paleoclimate records
represent an integration of all feedback processes; e.g., they include not only the temperature
response to CO; changes, but also the CO, response to temperature changes. Our simple paleo-
scenario allows such complications to be teased apart, to gauge over what timescales signals need
to be considered to approximate the desired equilibrium sensitivity and what the consequences
would be of pushing reconstructions from paleodata into shorter timescales.

For the scale and duration of the processes in our paleo-scenario, we draw on studies of glacial
cycles of the last 800,000 years. As such, this scenario may be seen as a rough approximation of a
deglaciation. Deglaciations were triggered by orbital forcing of climate, in particular by changes
in Northern Hemisphere summer insolation (Hays et al. 1976). Orbital forcing involves minor
annual-mean global-mean forcing («0.5 W m~2) but sets up considerable gradients on spatial
(latitudinal) and seasonal scales. For a long time, it was not well understood how these triggered
deglaciations (Shackleton 2000, Denton et al. 2010, Abe-Ouchi et al. 2013), although the timing
relationship was reasonably clear (Hays et al. 1976, Cheng et al. 2016). Recently, a simple model
has related every deglaciation of the last million years to the crossing of summer insolation through
a simple threshold (Tzedakis et al. 2017).

Our paleo-scenario considers an idealized sequence of events inspired by data for the penulti-
mate glacial termination (Marino etal. 2015, Holloway etal. 2016) because this termination avoids
the greater complexity of the last deglaciation yet still has the requisite chronological control for
the relevant climate records (Billups 2015, Marino et al. 2015). Following the initial perturbation
(orbital forcing) and fast responses, continental ice-volume changes over thousands of years drove
the further feedback responses mainly through bipolar temperature seesaw processes (Stocker
1998, Stocker & Johnsen 2003) that led to rapid Southern Ocean warming and sea-ice reduction,
CO; outgassing, warming and vapor feedbacks, and so on. Here we include aerosol changes in
that suite as well, despite a lack (so far) of unequivocal empirical evidence of that particular cou-
pling. There is no unambiguous empirical evidence about the phase relationship of global mean
vegetation responses to ice-volume changes, either. But given that we seek only to formulate an
illustrative, idealized scenario, we simply assume that key vegetation changes take place within
centuries following land-ice changes.

The orbital-forcing component is ignored here because of our focus on annual-mean global-
mean forcing. But it is important in that it directly triggers responses in ice sheets and other
processes in the climate system (Schmidt et al. 2017), which cause additional feedback responses
once the climate begins to change; some of these links develop rapidly, and others develop slowly.
For example, small, regionally or seasonally focused warming resulting from orbital forcing trig-
gers sea-ice retreat as well as changes in surface albedo and air-sea carbon exchange, which drive
further warming, and so on. Thereafter, the slow feedbacks come into action, such as land-ice
and vegetation albedo changes. When that happens, fast processes keep interacting with slow
feedbacks. Paleo-reconstructions cannot distinguish fast responses associated with slow processes
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from the slow processes themselves, or indeed the acceleration of slow processes resulting from
associated, superimposed fast responses. Note that similar interactions occur in actuo-climate
changes, but our simple actuo-scenario avoids this issue by pragmatically viewing the stipulated
slow-feedback influences as effective net impacts. Doing so in the paleo-scenario would divorce
our scenario too much from the paleo-reconstructions, in which temperature (and fast feedbacks)
closely coevolve over thousands of years with the slow feedbacks (e.g., Rohling et al. 2009; Grant
etal. 2012, 2014). Because our simple paleo-scenario cannot resolve such interactions (a dynamic
model would be needed), we instead include a crude representation by evaluating the contribu-
tion of fast feedbacks to paleoclimate change as a two-stage development. One stage stands for

@:»
1

the initial responses (indicated in Table 2 with “i” in the parameter names), and the other is
the subsequent fast-feedback response (indicated with “r”) associated with the development of the
dominant slow continental land-ice feedback (AR y)). We tentatively set 0.15:0.85 proportion-
alities for this. The proportionality is crudely inspired by early (initial) CO; jumps that predate
significant ice-volume/sea-ice responses, at around 16,300, 14,800, and 11,700 years ago, with
CO; levels in each case jumping abruptly by approximately 15% of the total deglacial change
(Lambeck et al. 2014, Marcott et al. 2014).

To obtain Sy, slow feedbacks are effectively considered to be climate forcings in the
PALAEOSENS (2012) framework. Our scenario considers the total greenhouse-gas forcing
component AR|grg). In paleodata studies, this component can be determined from records of
greenhouse-gas changes (notably from ice cores). These records integrate all carbon-cycle feed-
backs, including carbonate compensation and weathering, which therefore need not be considered
separately. We then add the continental land-ice albedo effect, which can be found from sea-level
reconstructions, giving ARjgrg) + ARy Finally, the slow vegetation albedo feedback (ARvq))
should be similarly accounted for, but this is substantially challenged by an absence of good global
data coverage, which definitely needs to be addressed through future research. To date, hardly
any paleo-studies have accounted for ARy (Friedrich et al. 2016 is an exception), and we assess
the implications by showing results that either include or exclude AR[yg). Our analysis does not
include albedo changes caused by atmospheric dust (aerosol) variations among the slow feedbacks/
forcings, because there is no agreed way to deal with aerosols in paleoclimate sensitivity studies
and because time series of atmospheric dust are geographically very limited and generally qual-
itative anyway, so that the aerosol component remains highly speculative and uncertain (e.g.,
PALAEOSENS 2012, Rohling et al. 2012).

We roughly calibrate or scale our paleo-scenario on the basis of values for the radiative forc-
ings and feedbacks compiled by Kohler et al. (2010) and Rohling et al. (2012) (Table 2), with
a total median value of 3 W m~2 for ARy (for discussion, see Section 3.1) and 2.5 W m™?
for ARG We use ARyg =1 W m~2, in agreement with Friedrich et al. (2016). As in the
PALAEOSENS (2012) framework, we assume that ARjg is proportional to ARy over timescales
of more than a few thousand years. On shorter timescales, this assumption cannot be correct be-
cause fast feedbacks dominate at first, whereas slow feedbacks become important at a later stage
(our results illustrate this). Proportional contributions of individual fast responses are irrelevant
here because our assessment always considers their summed value, but just for illustration’s sake,
we have made an attempt at reasonably apportioning them (Table 2). The total median range of
ARjag) is estimated at around 1.5 W m~2, and for snow and sea-ice albedo we use AR[ssy =2
W m~?, based on discussions by Kéhler et al. (2010) and Rohling et al. (2012). This leaves
3 W m~2 for the outgoing long-wave radiation response, water-vapor content, atmospheric lapse
rate, cloud albedo, and so on, all of which are captured in one term, ARjz). All radiative terms
are assigned £50% uncertainties using uniform distributions. The paleo-scenario omits §;so; and
3oy because paleodata yield only the total temperature response, which includes these factors.
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The median and 95 % uncertainty limits (2.5th and 97.5th percentiles) are determined from our
Monte Carlo statistics (z = 1,000) for the sum of all completed forcings and feedbacks (AR[ioq =
ARim + ARyy) (Figure 5a). From this, we determine A7(¢) (Figure 5b), assuming a constant
amount of temperature change per W m~? of radiative change. To do so, we scale each Monte
Carlo instance’s sum of all completed radiative contributions (ARjy), taken at #,,; = 10,000 years
(see Figure 5a), to a temperature change AT\.. The latter is randomly drawn from a normal
distribution set to a mean of 5°C and 1o of 1°C. This gives Sia = AT cal / ARt cat, and thus
the temperature time series A7T(#) = ARoq(f) X Sical, With propagation of all uncertainties in the
various AR terms and in AT, across all Monte Carlo instances (Figure 54). The final range
of temperature uncertainties (Figure 5b) spans the entire range of proposed, and still debated,
glacial-interglacial temperature-change estimates of Hansen etal. (2007), MARGO (2009), Kéhler
etal. (2010), Masson-Delmotte etal. (2010), Schmittner et al. 2011), Rohling et al. (2012), Annan
& Hargreaves (2013), and Snyder (2016).

Based on the time series AR (?), AR} (?), and AT{(z), we calculate S (2) = AT(¢) / AR () as in
the PALAEOSENS (2012) framework, as well as Sy (1) = AT(#) / AR (), which is more directly
comparable to S$* from the actuo-scenario (Figure 5¢). Comparison between Siq(¢) and Sy (2)
highlights the controls on their similarities and differences. Note that calculating Sy (2) is possible
in this simple scenario but not in real paleodata studies. There is also a complication in that part
of AR consists of ARy, which is still poorly understood in real paleodata studies. Hence, most
such studies use a pragmatic approximation of AR5, which is just ARjgrg) + ARjLyy. Here we
determine both versions, one with and one without ARy, to illustrate how this limitation affects
the results.

The results for Sq(#) and Sy (7) only begin to fully converge at around # = 5,000 years (Figure
5¢) because of a predominance of the fast feedbacks on short timescales and an increased relative
importance of slow feedbacks on longer timescales. We read estimates for the equilibrium paleo-
climate sensitivity parameter Si¢ as the average of values between #= 8,000 and 7= 10,000 years.
Figure 6 shows histograms for our paleo-scenario. The exact convergence between Siq(¢) and
S[ﬁ] (t) in the scenario with AR[SQ = AR[(;HQ] + AR[LI] + AR[VG] results from the PALAEOSENS
(2012) argument that AR approximates AR[y;. However, Figures 5¢ and 6 show that the com-
mon pragmatic limitation of ARy = AR|Grg) + ARy (without ARvg)) overestimates long-term
values for S (#) by almost 20%.

4. DISCUSSION

4.1. Comparison Between S$* and Si

It stands out strongly from Figure 3 for the actuo-scenario that any reported S* value needs
to be carefully referenced to the processes that are included. This is commonly done using a
rather arbitrary timescale of 100 years, which is then considered to give the ECS that includes
all fast processes and surface-ocean warming but excludes slow processes (PALAEOSENS 2012).
It is interesting, however, to compare this approach with models, where one can check when
equilibrium is reached. For example, Hansen et al. (2011) showed that, in the Goddard Institute
for Space Studies ModelE-R, surface-ocean equilibration to instantaneous forcing is just 60%
complete after 100 years, reaching ~100% only after as much as 2,000 years (their figure 3). In
addition, in runs longer than 100 years in most models, the relationship between energy imbalance
and temperature change that is used to extrapolate ECS (the so-called Gregory method; Gregory
et al. 2004) breaks down from an assumed linear relationship to a nonlinear one (Bloch-Johnson
et al. 2015, Rugenstein et al. 2016b, Proistosescu & Huybers 2017). In addition, as mentioned
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Figure 5

Assessment of Sjgg in
our main paleo-
scenario. (#) Relative
radiative contributions
per process (showing
only medians) and
their total sum, along
with 95% probability
bounds, following the
parameters outlined in
Table 2. The number
of randomly perturbed
(see Table 2)
iterations is

n=1,000. The blue
bar indicates the time
point of calibration
(tcal, in this case where
the full response has
been completed). The
parameters are
indicated in the legend
as “XX” as shorthand
for “ARxx).” (b) Total
temperature
development through
time, in relation to the
total radiative change
given in panel ¢, along
with 95% probability
bounds. As in panel 4,
the blue bar indicates
the time point of
calibration (¢.,], where
the full response has
been completed).

(¢) Calculated
paleoclimate
sensitivity along with
95% probability
bounds for different
definitions. The two
connected arrows on
the right show the
interval where the Sy
estimate is taken.
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Histograms for our paleo-scenario. The various curves are determined as the averages of 8,000 < ¢ <
10,000 years, as indicated in Figure 5c. The gray shading represents a scaled version of the distribution from
PALAEOSENS (2012, their figure 3¢).

above, any comparison of our number for §* with general circulation model-based ECS estimates is
complicated by the fact that model simulations typically start with a perturbation of CO, but omit
the observed negative radiative impacts from anthropogenic aerosols and land-surface changes
(Figure 2), which act to reduce the temperature rise.

Clearly, even our simple scenario does not neatly separate processes in time. Uncertainties in
the timescales of the various processes and the potential operation of ARcpp) on similar timescales
to 8s0) make climate sensitivity a moving target through time (Figure 3). For the example set
up here, t=200 years seems more suitable for determining S* because all included responses
(fast feedbacks) have completed (although this is not fully the case in the more realistic model of
Hansen etal. 2011). However, even in our simple scenario, #= 200 years does not provide a clear-
cut criterion because the estimate then includes AR(crpj, which should in that case be corrected
for to match the definition of ECS (Figures 3¢ and 4). And in reality, there will be further
carbon-cycle processes causing similar issues, as discussed in Section 3.1. Therefore, although
exact definitions of included processes and better determination of the timescales of the different
contributing response functions are needed to obtain S* estimates that are as precise as possible
(and as comparable between studies as possible), it is not obvious that such a level of distinction
will always be possible in a natural system.

Figure 3¢ also shows that, if an arbitrarily selected cutoff time for S* assessment causes partial
inclusion of ongoing slow processes (e.g., surface-ocean warming), then this may cause extended
tails to the probability distribution function (PDF) of the climate sensitivity estimate. In particular,
if this PDF were made by collating information from different climate models, each with differ-
ent representations of the myriad processes and their timescales, then the combined PDF may
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become very broad. A narrower combined PDF might be obtained by identifying the contributions
of each process to climate sensitivity in each model and then comparing results not at a certain
time step, but instead at a certain well-defined point that is based on exactly which processes are
included and which are not. This point may occur at different time steps in different models.
This approach would be a more process-oriented way of comparing between models than a sim-
ple comparison between their results at an arbitrarily selected moment in time, where different
processes contribute to different degrees in different models. Also note that our use of uniform
distributions for the various parameter uncertainties limits the potential skew and the potential
for long tails in the calculated final PDFs (Figure 3) relative to results based on ratios between
Gaussian-shaped PDFs for AT and AR (Kohler et al. 2010). We consider our approach justified
by the fact that most uncertainties concern not random error around mean estimates but ranges
of potential systematic (e.g., state-dependent) shifts of the means for many feedback efficacies. In
reality, the uncertainty ranges may be more complicated, combining both systematic and random
components.

Now we get to the critical question about which process-based definitions would be needed for
the best comparison of $* from actuo-studies with Sjy in paleo-studies. One issue concerns the
above-mentioned impacts of relatively fast carbon-cycle feedbacks (ARcrp) and similar additional
ones in reality; see Section 3.1) on how $* is estimated in actuo-studies. In addition, Figures 5¢
and 6 illustrate how a lack of explicit accounting for ARy in the most commonly used specific
paleoclimate sensitivity term (Sjgrc,ij) risks a considerable overestimate of the inferred climate
sensitivity value (almost 20% in our simple scenario), making it an inaccurate approximation of Sig
and therefore S*. This clearly illustrates why resolving vegetation albedo impacts on the radiative
balance of climate needs priority in data-based reconstructions of paleoclimate sensitivity.

Next, Figure 5c¢ suggests that—regardless of the definition used—pushing paleoclimate sensi-
tivity reconstructions from time series of paleodata to temporal resolutions of less than 5,000 years
may resultin overestimates of paleoclimate sensitivity because of transient behavior in the solution.
This suggests that paleoclimate sensitivity reconstructions through, for example, North Atlantic
Heinrich events or the Younger Dryas may yield unstable results, with potential anomalies to
high values. Yet it may be instructive to carefully reconstruct time series of paleoclimate sensitiv-
ity in high temporal resolutions to see whether such transient anomalies are actually found and, if
so, when and how they settle toward equilibrium values. Accurate reconstruction of global mean
temperature changes will be vital to such assessments because a large component of the temper-
ature swings through such events may concern energy redistribution around the globe (Stocker
1998) rather than global mean change. Establishing the transient behavior of paleoclimate sen-
sitivity might uncover interesting clues about the critical real-world processes involved and their
timescales.

Finally, paleoclimate studies can measure only the full temperature response, which includes
the delayed ocean responses §(so; and (part or all of) §|po). For a sound like-with-like comparison, a
truly equilibrated actuo-scenario should therefore include these responses as well. As shown above,
inclusion of §[so) brings a conflict with potential contributions of AR|cpp) in the actuo-scenario
(Figure 3). In time-series-based paleoclimate studies, individual carbon-cycle components cannot
be distinguished, so the best comparison between S* from actuo-studies and paleo-S estimates
would require exclusion of any AR|cpp) influences (and/or similar carbon-cycle changes; see Sec-
tion 3.1) from the S* estimate. The situation is worse with respect to the slow §poj. Including
this in an S$? estimate from actuo-studies would require consideration over thousands of years,
by which time carbonate compensation, continental land-ice influences, and long-term vegeta-
tion adjustments would also have become important players in the temperature developments
(Figure 3). In addition, inclusion of §;po; would increase the timescale of evaluation to a few
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thousand years rather than a century or two into the future, which reduces the apparent relevance
to society. For pragmatic reasons, S* is defined to include AR[1}, ARssy, AR[agj, and 8oy, and it
is inevitable that this imposes some limitations on precise comparability with paleoclimate-based
Sisf estimates.

4.2. The Dependence of Paleoclimate Sensitivity on Feedback Efficacy Changes

Efficacies of the various processes (in essence, their contributing amplitudes) are reasonably un-
derstood for the present day, where there are many observations to constrain the inferred ranges
of variation. But as we transition into a much warmer world, the potential for efficacy changes
in key feedbacks cannot be excluded and must be considered. For example, the efficacy of the
snow and ice albedos may change as latitudinal distributions of snow and ice change, affecting the
amount of (latitude-dependent) insolation reflection per unit area, and the efficacies of the fast
water-vapor and cloud feedbacks may also change with background temperature (e.g., Caballero
& Huber 2013; von der Heydt et al. 2014, 2016; Kohler et al. 2015). The uncertainty ranges
allowed in the actuo-scenario yield wide tails in the climate sensitivity distributions, especially at
the high end (Figures 3 and 4). A possible approach to constrain the width of the tails would be to
perform large ensembles of runs over wide parameter spaces with a more representative climate
model over the historical period, excluding runs that do not agree with historical time series of
climate data and then determining climate sensitivity from the remaining runs.

As it is, our simple actuo-scenario’s estimates for S* are reached after approximately 200 years
and range over a 95% probability envelope of 0.8-1.6 K W~! m? around a median of 1.1 K W~!
m? for the case that does not explicitly account for AR|cgpj, and 0.7-1.4 K W' m? around a
median of 1.0 K W~! m? for the case that does explicitly account for AR|cyp). The equilibrium
value therefore is approximately 1.5 times the scenario’s transient climate sensitivity value before
80 involvement, which has a 95% range of 0.5-0.9 K W~=! m? around a median of 0.7 K W~!
m? (see Figure 34,c).

Our actuo-scenario’s peak values, which mark the time when slow feedbacks have also made
their maximum contribution (§™), have a 95% probability range of 1.0-2.3 K W~! m? around a
median of 1.5 K W~! m? for the case that does not explicitly account for ARcrp), and 1.0-2.1 K
W-!'m? around a median of 1.4 K W~ m? for the case that does explicitly account for ARcrg).
These values are achieved after approximately 1,000 years and indicate a level of approximately
twice the scenario’s transient climate sensitivity value.

The efficacies in the paleo-scenario are notably less constrained and may depend consid-
erably on the climate background state (Kéhler et al. 2015, Friedrich et al. 2016, von der
Heydt et al. 2016). Our scenarios, using either SigrgLivg) or SigreLy, include the cumula-
tive impacts of efficacy variations in all feedbacks over +£50% ranges (uniformly distributed)
(Figures 5¢ and 6). For Signg,iva), we find an equilibrium 95% probability range of 0.4-1.3 K
W~ m? around a median of 0.8 K W~! m?. For the more common approximation in paleo-studies,
Sicne,L1, we find an equilibrium 95% probability range of 0.5-1.6 K W= m? around a median of
0.9 K W-=! m? (Figures 5c¢ and 6). The latter estimate is the most useful one for comparison
with published equilibrium paleoclimate sensitivity estimates because those typically were not
corrected for ARy either.

With total 95% bounds of 0.4-1.6 K W~! m?, our assessments for Sigug 1y and Sigue.Liva)
closely approximate the 95% bounds of 0.3-1.9 K W~ m? for similarly defined, observation-based
estimates for the last 65 million years (PALAEOSENS 2012) (Figure 6). We infer, in agreement
with Kéhler et al. (2015), that the wide range in the PALAEOSENS (2012) framework likely
results from integration of observations across a range of state-dependent paleoclimate sensitivity
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values through time. This is an important point: It would seem that the width of previously
reconstructed paleoclimate sensitivity distributions is not so much a function of random (proxy-
based) measurement uncertainties, but instead is driven primarily by the integration of numerous,
hitherto unrecognized, narrower state-dependent distributions. Given that the width of our simple
scenario’s range agrees well with that found from observations, we tentatively infer that overall
efficacy changes through time likely remained within roughly £50%. A caveat here is that our
scenarios do not include cloud feedback mechanisms (Ceppi et al. 2017), either directly or through
interaction with ocean heat uptake (Rose & Rayborn 2016), which are commonly held to be a key
contributor to uncertainties in (the broad range of) climate sensitivity estimates. Such processes
may significantly affect both actuo- and paleoclimate sensitivity reconstructions, but certainly
for paleo-cases cannot be resolved because no method exists to reconstruct past cloud cover and
types, and we are not aware of any long-term simulations with models that include realistic cloud
(micro)physics.

Finally, we compare results between Figures 4 and 6. At 0.7-1.6 K W~ m? around a median
of 1.0-1.1 K W=! m?, §* from our actuo-scenario appears to be slightly higher than Sy from
the paleo-scenario, at 0.4-1.6 K W~! m? around a median of 0.8-0.9 K W~! m’. However,
this slight offset likely results from differences in the way the calculations have been constrained
between the scenarios. With respect to the distribution width difference, we see potential for
paleo-studies to provide Sjy distributions that portray real total climate-system responses that
represent real-world realizations of climate change, and for careful work (especially with respect
to chronological relationships between time-series of data) to eventually deconvolve the overall
probability distributions into narrower ones that account for climate-state dependence. Thus,
paleodata studies may provide key templates (prior distributions) for exercises to select best-
matching subsets from model mega-ensemble assessments of future climate developments.

Finally, we consider the question of how to tease out state dependence from paleodata using
carefully designed experiments (Figure 5). It cannot be excluded that this will be possible, but the
apparent size of the 95% probability envelope for individual scenarios suggests that estimates for
different climate states are likely to overlap, except in extremely contrasting cases.

4.3. Comparison with Other Approaches

Although the above conceptual framework is different in its focus on the time domain, it follows
the general principles laid out by PALAEOSENS (2012) and further explored by Royer (2016). Yet
the framework’s focus on radiative forcing anomalies to calculate temperature change and climate
sensitivity may be less familiar to climate modelers. Therefore, we here assess the implications of
a focus on the time domain in a framework of feedback analysis.

Classically, a perturbation of the radiative forcing ARp—for example, by an instantaneous dou-
bling of atmospheric CO, concentrations—leads to a temperature anomaly AT{(t) = — ARp/ X A;(2),
where the sum of feedback parameters consists of the Planck feedback (Ap =—3.2 W m=2 K7})
responsible for a rise in the outgoing long-wave radiation, the sum of all other fast feedbacks
(Xother—s for surface albedo, water vapor, lapse rate, and clouds), and contributions from ocean
heat uptake efficiency («) to the surface and deep ocean (e.g., Rose & Rayborn 2016, Rugenstein
et al. 2016a). The latter are in the classical framework not called feedbacks (Dufresne & Bony
2008) but can still be calculated as such. In our example demonstration of how this framework
works (Figure 7), these feedbacks are parameterized based on multimodel results from CMIP3
(Dufresne & Bony 2008). Although newer (CMIPS5) results have been published (Vial etal. 2013),
these results include a forcing adjustment, which we prefer to ignore here because it complicates
the system and might be negligible in the paleo-framework.
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Figure 7

Analysis of the classical 2 x CO; experiment in a feedback analysis framework. An initial perturbation in the radiative forcing, AR,
leads without any further feedbacks to the Planck response [change in outgoing long-wave radiation (OLW)], which is enhanced by
further time-dependent feedback terms, 2;(z).

We thus end up with a time-dependent term for Agherr = +1.9 Wm~2 K=!, which is modulated
with signal development similar to that given in Equation 2 to obtain the full amplitude with
7 =10 years. The pure Planck feedback then leads to a temperature rise of approximately 1 K
after the first year and, together with the fast feedbacks, to approximately 2 K after a decade,
in agreement with recent estimates of the transient climate sensitivity (Storelvmo et al. 2016).
Adding the ocean heat uptake efficiency to the surface ocean (k1 or Aso=—0.67 W m~2 K1,
with 7 =100 years) then leads to a temperature rise of 3 K after a century and to a rise in the
time-dependent specific climate sensitivity S(f) = AT/ARy from 0.52 K W~! m? after a decade
to 0.79 K W~! m? after a century, in agreement with the estimate of ECS in CMIP3. Taking
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into account that model simulations underlying the classical calculations of ECS are not in full
equilibrium (Gregory et al. 2004, Hansen et al. 2011, Bloch-Johnson et al. 2015, Rugenstein et al.
2016b), one might define deep-ocean heat uptake efficiency as another feedback parameter (k, or
Apo =0.5 Wm=2 K-, with  =2,000 years) that leads to a further temperature rise to a AT of
up to 5 K on a multimillennial timescale.

Similar to this 2 x CO, example, one might translate the radiative forcing anomalies for our
actuo- and paleo-scenarios (as summarized in Tables 1 and 2) into a framework of feedback
analysis. This would yield figures similar to Figure 7 but no new insights with respect to the time
dependence of S, and therefore we do not evaluate it further here.

5. SUMMARY AND FUTURE ISSUES

We have analyzed and compared approaches for determining climate sensitivity in studies of
modern/future (actuo) and past (paleo) climate, using graphical illustrations based on highly ide-
alized scenarios. This reveals problems with determining a unique value for ECS in both actuo-
and paleo-scenarios, because the processes involved are not strictly separated in time and/or are in-
sufficiently understood for a sound quantification. In addition, there are issues with understanding
the efficacies of the dominant processes (particularly for the paleo-scenario), which likely under-
pin the state dependence of climate sensitivity and the length of the tails of reconstructed climate
sensitivity PDFs. The analysis presented here suggests that the width of previously reconstructed
paleoclimate sensitivity distributions likely reflects the integration of numerous state-dependent
distributions.

There are several key requirements for advancing the debate: () Precise chronological control
is needed when comparing different proxy records of global temperature changes and forcings or
feedbacks; (b) new approaches or strategies for reconstructing mean global temperature changes
from paleo-studies are needed, given that even reconstructions through the Last Glacial Maxi-
mum disagree over a wide range; and (¢) model-independent ways of evaluating the records are
needed to avoid introducing model-dependent artifacts in the calculated climate sensitivities (i.e.,
circular reasoning). Furthermore, there is a continued need for (#) a refined understanding of
how certain parameters (e.g., mean global temperature or CO, concentrations) are estimated with
different proxies (method intercomparison studies), () detailed descriptions of assumptions and
uncertainties and transparent and complete propagation of these into the calculated sensitivity
distributions, (¢) careful and transparent definition of which terms exactly are being compared be-
tween case studies, and (d) elaboration of high-quality records for the major missing slow feedback
(vegetation).

Finally, we infer that the main focus in current work concerns the potential climate-
background-state dependence of climate sensitivity. Our analysis suggests that it will be chal-
lenging to statistically robustly confirm this using paleodata. No doubt this problem will continue
to receive a significant amount of attention within the next few years, and hopefully innovative
approaches will be developed to constrain this critical aspect. In our view, a better understanding
of feedback efficacy changes through time will be critical to sufficiently reducing uncertainties for
the statistical distinction of state dependence in climate sensitivity.
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