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Abstract Estimation of climate sensitivity is fundamental to assessing how global climate will warm as
atmospheric CO2 concentration increases. Geological archives of environmental change provide insights into
Earth's past climate, but the incomplete nature of paleoclimate reconstructions and their inherent uncertainties
make estimation of climate sensitivity challenging. Thus, quantifying climate sensitivity and assessing how it
changed through geological time requires statistical frameworks that can handle data uncertainties in a
principled fashion. Here we demonstrate some of the hurdles to estimating climate sensitivity, with a focus on
current statistical techniques that may underestimate both climate sensitivity and its associated uncertainty. To
solve these issues, we present a Bayesian error‐in‐variables regression model, which can yield estimates of
climate sensitivity without bias. The regression model is flexible and can account for data point uncertainties
with a known parametric form. The utility of this approach is demonstrated by estimating specific climate
sensitivity with uncertainty for the Eocene.

Plain Language Summary As atmospheric CO2 increases due to human activities, the Earth will
warm. But howmuch warming can be expected? Climate sensitivity describes howmuch global average surface
temperature will warm with a given increase in atmospheric CO2. While this is a simple definition, estimating
climate sensitivity is difficult because Earth's climate system is complex with a number of poorly understood
interacting parts. One approach to estimating climate sensitivity is to quantify how Earth's climate changed as a
result of variations in atmospheric CO2 through geological time. This information is invaluable, but it is patchy
and has large uncertainties that make estimating climate sensitivity challenging. In particular, existing statistical
techniques may underestimate climate sensitivity and, thus, underestimate future warming. In this paper we
present an alternative approach to determining climate sensitivity that overcomes the underestimation problem
and demonstrate its performance using geological data from the Eocene epoch.

1. Introduction
Climate sensitivity (S) corresponds to the rise in global mean surface temperature (GMST) for a given radiative
forcing (PALAEOSENS Project Members, 2012). By 2100, atmospheric CO2 is expected to have more than
doubled from its preindustrial level under a scenario described by the Intergovernmental Panel on Climate
Change as “Intermediate,” thus estimates of S are crucial to the understanding of future climate change (Pörtner
et al., 2022). Paleoclimate reconstructions play an important role in determining how large‐scale variations in
atmospheric CO2 have influenced past climates on centennial and multi‐millennial time scales (Friedrich
et al., 2016; Köhler et al., 2010, 2015, 2017, 2018; Martínez‐Botí et al., 2015; Pagani et al., 2010; PALAEOSENS
Project Members, 2012; Snyder, 2016; The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Con-
sortium, 2023; von der Heydt et al., 2016). Furthermore, the recent study of Sherwood et al. (2020) developed a
new statistical framework to constrain climate sensitivity via the combination of multiple lines of evidence.
Importantly, paleoclimate reconstructions provide information across geological intervals with strongly differing
climates, thus elucidating the complexities of different parts of the global climate system and their interactions
(Anagnostou et al., 2020; Brown et al., 2022; Hansen et al., 2013; The Cenozoic CO2 Proxy Integration Project
(CenCO2PIP) Consortium, 2023).

“Equilibrium” climate sensitivity is defined as the GMST change between two equilibrium climate states caused
by a given radiative forcing (Forster et al., 2021). For example, in the case of atmospheric CO2 doubling, this
corresponds to GMST change in response to a radiative forcing of ∼3.7 Wm− 2 (Myhre et al., 1998). “Specific”
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climate sensitivity is the change in GMST per 1 Wm− 2 of radiative forcing (PALAEOSENS Project Mem-
bers, 2012). If a given reference equilibrium climate state is perturbed, for example, by a change in atmospheric
CO2, while the GMST remains fixed, the change in the top of atmosphere radiative flux corresponds to a forcing,
R. If ΔT is the subsequent change in GMST in response to R, specific climate sensitivity can be estimated:

S =
ΔT
R

. (1)

Equilibrium climate states are typically chosen according to specific research questions and hypotheses to be
tested. For example, a preindustrial reference state is typically employed when considering potential GMST
change due to anthropogenic CO2 emissions.

Because radiative forcing is controlled by a range of connected processes, for example, atmospheric CO2, land‐ice
albedo, atmospheric aerosols, etc., estimates of S will depend on which forcing parameters are considered. To
avoid ambiguity, PALAEOSENS Project Members (2012) defined a nomenclature to indicate the sources of
radiative forcing under consideration. For example, a reconstruction considering the radiative impacts of at-
mospheric CO2 and land‐ice albedo (LI) will yield an estimate of S[CO2,LI]. We adopt S[X] as a generic term for the
specific climate sensitivity in the following exposition and use appropriate terms when real‐world examples are
considered.

Equation 1 is susceptible to noise and when the denominator is small, S[X] can vary strongly due to data un-
certainty. Alternatively, if S[X] is estimated based on substantially different climate states, the numerator and
denominator will have large values but the estimated S[X] will only represent an average over potentially state‐
dependent values. When a limited number of observations is available, Equation 1 may be the only option to
estimate S[X]. However, when a larger number of observations is available, regression of ΔT on R[X] can provide a
more informative estimate (Köhler et al., 2015). For example, if climate sensitivity is assumed to be constant with
respect to the radiative forcing spanned by the data, S[X] can be estimated by fitting the straight‐line relationship:

ΔT = S[X]R[X] + γ, (2)

where γ is an intercept term. Alternatively, if climate sensitivity is thought to have varied as a function of radiative
forcing, S[X] can be estimated as the derivative of a higher‐order polynomial fitted to the data (Köhler et al., 2015).
Such fitting is typically performed via ordinary least‐squares (OLS). Furthermore, previous studies have argued
that if there is no change in radiative forcing (i.e., R[X] = 0), there will be no corresponding change in GMST (i.e.,
ΔT = 0), so that the intercept term in Equation 3 is not required (Köhler et al., 2015, 2017, 2018) and:

ΔT = S[X]R[X]. (3)

Equation 3 will only hold if R[X] includes complete forcing information. Typically, paleoclimate reconstructions
are made via a set of incomplete observations because it is infeasible to determine all the forcing parameters,
feedbacks, etc., that influence GMST (PALAEOSENS Project Members, 2012). Therefore it is expected that
GMST will vary due to forcing mechanisms not quantified by a given R[X]. As such, an intercept term will
typically be required to account for the potential influence of unobserved forcing on GMST.

Observations of T and R include uncertainties due to errors in instrumental measurements, proxy calibration, etc.
These uncertainties play a crucial role in estimating S[X] and its uncertainty. Observational uncertainties are
typically propagated numerically, with the OLS regression process repeated multiple times using realizations
drawn at random from data point uncertainties (i.e., parametric bootstrapping, Efron and Tibshirani (1994)). A
confidence interval for S[X] is then estimated based on percentiles of the regression coefficients (Köhler
et al., 2015). However, OLS is not symmetric and assumes that the uncertainties associated with the independent
variable (R[X]) are negligible (Draper & Smith, 1998). When estimating S[X] via OLS regression, uncertainties in
ΔT contribute to uncertainty in the fitted slope, and hence S[X], but do not introduce bias. In contrast, uncertainties
in R will introduce both uncertainty and bias in the fitted slope. This is referred to as regression “dilution” and as
the uncertainty in R[X] increases, the biased estimate of S[X] will approach zero (Frost & Thompson, 2000).
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Previous studies have considered regression asymmetry of OLS by reversing the roles of ΔT and R[X], that is,
regress R[X] on ΔT rather than ΔT on R[X] (Köhler et al., 2017). Such an approach; however, does not consider the
uncertainties in the independent and dependent variables simultaneously, therefore yielding unreliable estimates
of the fitted slope uncertainty.

Regression techniques are available that consider simultaneously uncertainty in both the independent and
dependent variables. For example, major axis and scaled major axis regression correspond to the leading principal
component of the data covariance and correlation matrices, respectively (Warton et al., 2006). However, these
approaches do not incorporate known data uncertainties into their estimates, rather uncertainty is estimated based
on the misfit of the model to the data. Similarly, total least‐squares relies on assumptions concerning constant data
uncertainties that will typically be inappropriate for paleoclimate data (Markovsky & Van Huffel, 2007). Brown
et al. (2022) addressed dilution in paleoclimate data by estimating S[X] via SIMEX regression (Cook & Ste-
fanski, 1994; Lederer & Seibold, 2019) which can incorporate Gaussian uncertainties for individual data points.
High‐quality paleoclimatic reconstructions now place a strong focus on full propagation of uncertainties (The
Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium, 2023). When such quantitative information
is available, it should be incorporated into the regression analysis directly to enable rigorous estimation of S[X].
This requires a flexible regression framework that can handle specific, potentially non‐Gaussian, uncertainties for
individual data points.

In this paper we consider the challenges of estimating S[X] when uncertainties in the independent and dependent
variables are known. Importantly, it should be possible to define these uncertainties fully and not rely on as-
sumptions, such as Gaussian uncertainties or that the ratio of uncertainty variances in the independent and
dependent variables is constant. To achieve this, we propose a solution based on an errors‐in‐variables (EIV)
approach that can be placed readily into a Bayesian framework to enable estimation of the uncertainty associated
with S[X] in a principled fashion.

2. Errors‐in‐Variables Regression
A likelihood‐based errors‐in‐variables (EIV) approach developed by Sambridge (2016) enables observational
uncertainties to be combined in a Bayesian regression framework. Importantly, the EIV approach of Sam-
bridge (2016) is symmetrical, considering uncertainty in both the independent and dependent variables simul-
taneously. It will therefore not suffer from dilution bias.

Consider a regression model defined by a set of parameters, such as a straight‐line consisting of a gradient and
intercept. The “likelihood” of that set of model parameters given the observed data is a function that measures the
probability of the observed data given the parameters (Bishop, 2006). Therefore, a model that fits the data poorly
will have a low likelihood, and better fitting models with have higher likelihoods. Regression can therefore be
performed by adjusting model parameters (c) to maximize the likelihood given the data (d). This will provide a
maximum likelihood estimate (MLE) corresponding to the model parameters considered the most likely to have
produced the observed data, that is, the model maximizes the probability; p(d|c).

Sambridge (2016) demonstrated how to determine the likelihood of a given curve with respect to a single data
point with uncertainties in the independent (X) and dependent (Y) variables, which together define a joint
probability density function ( fX,Y) . Specifically, Sambridge (2016) showed that the likelihood could be found by
integrating fX,Y along the proposed regression curve (Figure 1). Formally, if θ corresponds to the position along a
given curve, the likelihood of the data given the curve is:

p(d|c) =∫ p(d|θ,c)p(θ|c)dθ, (4)

where p(θ|c) is set to 1 because it is considered that all poistions along the curve could be responsible for the
observed data point with equal probability (Sambridge, 2016). In the case of multiple data points it is reasonable
to assume their uncertainties are independent of each other (i.e., the uncertainties associated with one data point
do not depend on the uncertainties of the other data points). Then the overall likelihood considering all the data is
simply the product of the integrals of the individual data points. For example, if there are N data points the
likelihood is:
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p(d|c) = ∏
N

i=1
∫ p(di|θ,c) p(θ|c)dθ. (5)

Equation 5 demonstrates that the likelihood can be determined if the data
point uncertainties have a parametric form that can be used to define a joint
probability function. In the case of data points with dependent uncertainties,
the product of one‐dimensional integrals employed in Equation 5 is inap-
propriate and p(d|c) must instead be found by multidimensional integration
(see Sambridge (2016) for details). Previous regression‐based estimates of
S[X] have assumed independent uncertainties (Köhler et al., 2010, 2015,
2017), so Equation 5 is adopted here. Importantly, the outlined likelihood‐
based approach is flexible and does not assume Gaussian distributed un-
certainties or even that data points have uncertainties with the same para-
metric form. Furthermore, for a given data point the independent and
dependent parameter uncertainties can be correlated if required.

2.1. Maximum Likelihood Estimation

We first demonstrate how Equation 5 can be used to fit a polynomial to a
collection of data points. 50 uniformly distributed numbers were generated in
the interval (0,1) to act as X values. Values of Y were obtained as Y = 3X.
This example relationship was selected because of its similarity to the

S[CO2] = 3.08±0.96 K W− 1m2 estimated by PALAEOSENS Project Members (2012). All the points were then
assigned errors based on Gaussian uncertainties with standard deviations of 0.2 and 0.1 in X and Y, respectively.
Addition of these errors mean that the points no longer sit perfectly on a straight‐line and can reside outside the
(0,1) and (0,3) intervals for X and Y, respectively (Figure 2a).

While adaptive quadrature (Press et al., 2007) can be used to estimate the indefinite integral in Equation 4 along
the entire length of a line, it is inefficient. We therefore employed the trapezoid rule (Press et al., 2007) to estimate
the definite integral between limits based on the data. These limits, denoted as X0 and X1, are defined according to

Figure 1. Demonstration of how the likelihood; p(d|c), in Equation 4 is
determined. Black lines represent the fX,Y contours of a bivariate Gaussian
distribution and two candidate regression lines are shown in blue and red.
Positions along the lines are denoted by their θ values. The likelihood
corresponding to each line is the integral of the bivariate Gaussian distribution
with respect to θ along the lines. In this example, p(d|c) is greater for the blue
line than the red line because it passes through the main body of the distribution
where fX,Y is larger.

Figure 2. (a) Synthetic regression example based on Y = 3X and data uncertainties with standard deviations of 0.2 and 0.1 in
X and Y , respectively. While the ordinary least‐squares (OLS) (blue) regression has a shallow gradient due to dilution, the
maximum likelihood estimate (MLE) (red) gradient is consistent with the true gradient. (b) The fitting procedure shown in panel
(a) was repeated 1,000 times with different random data. Histograms of the estimated gradients demonstrate that the OLS (blue)
fits are consistently too shallow, while the MLE (red) fits are centered around the true gradient of 3. The 2.5 and 97.5 percentiles
of the estimated gradients are shown as dashed lines.
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X values selected to be far enough removed from the data that fX,Y will effectively be zero. In the case of a straight‐
line, the regression relationship can be defined by a line connecting two coordinates; (X0,Y0) and (X1,Y1). If θ is
the distance along the line from (X0,Y0) and θ1 is the distance between (X0,Y0) and (X1,Y1) , then Equation 5
becomes:

p(d|c) = ∏
N

i=1
∫

θ1

0
p(di|θ,c) p(θ|c)dθ. (6)

The data were fitted with straight‐lines using both OLS and MLE. The MLE solution was found numerically by
determining the values of Y0 and Y1 that maximized Equation 6 when X0 and X1 were set to − 5 and 5,
respectively. This maximization was performed via sequential least squares programming (Virtanen et al., 2020)
with Y0 and Y1 initialized based on the OLS fit (to avoid floating point underflow, numerical maximization was
based on the logarithm of the likelihood). The resulting fits are compared in Figure 2a, which demonstrates that
the MLE‐based gradient is steeper than the OLS‐based gradient, which suffers from dilution bias. This process
was repeated with 1,000 random data sets to compare the estimated gradients of the OLS and MLE approaches
(Figure 2b). This again demonstrates that the OLS regression suffers from dilution, while the MLE estimates are
consistent with the Y = 3X relationship.

2.2. Bayesian EIV Regression

Given the EIV likelihood (Equation 6), the regression process can be placed into a Bayesian framework to es-
timate uncertainty in S[X]. The theorem of Bayes (1763) enables estimation of the a posteriori probability density
function of the regression model parameters (c) given the data (d):

p(c|d) =
p(d|c)p(c)

p(d)
. (7)

where p(c) and p(d) are prior probability distributions for the regression model parameters and data, respectively.
The p(c|d) distribution cannot be determined analytically, however, it can be approximated numerically though
Markov chain Monte Carlo (MCMC) sampling (Bishop, 2006). In this study we sample the posterior distribution
using a Python implementation (Foreman‐Mackey et al., 2013) of the affine‐invariant ensemble sampler for
MCMC proposed by Goodman and Weare (2010).

When considering priors, MCMC sampling of the posterior does not require p(d), but does require p(c). Rather
than formulating p(c) based on knowledge of S[X], we instead define uniform priors for the Y0 and Y1 coordinates
discussed in Section 2.1. For example, when considering a straight‐line fit, the priors are based on one uniform
distribution with user‐defined limits at X0 and a second identical uniform distribution at X1. This is illustrated in
Figure 3a using the example data from Section 2.1, where the X0 and X1 integration limits were set as − 5 and 5,
respectively. The Y variable limits for the priors are set as (− 30,30). A number is then drawn at random from the
uniform distribution at X0 and denoted as Y0. Then a number is drawn from the uniform distribution at X1 and
denoted as Y1. The equation of the resulting straight‐line between [X0,Y0] and [X1,Y1] is one realization from
p(c) (Figure 3a). If Y0 and Y1 are drawn from identical uniform distributions with limits [a,b], the prior on the
intercept of the line (Figure 3b) will be a symmetrical triangular distribution with mean (a + b)/2 and variance
(a − b)2/ 24. The prior on the gradient of the line (Figure 3c) will also be a symmetrical triangular distribution
with a mean of 0 and variance (a − b)2 ⁄6(X1 − X0)2. Similarly, to fit a quadratic regression, uniform distributions
can be defined at X0, (X0 + X1)/2, and X1. Three random numbers drawn from these distributions then define
coordinates along a quadratic. This process can be extended readily to higher‐order polynomials as required. In
the specific case of estimating climate sensitivity, the limits of the uniform distributions employed in defining the
priors described above can be selected based on an expected range of ΔT or set to be sufficiently broad that the
intercept and gradient triangular distributions are effectively flat. Importantly, the MCMC sampler of Foreman‐
Mackey et al. (2013) is flexible and it is straightforward to define alternative priors for the regression line intercept
and gradient if desired.

To demonstrate the proposed approach we return to the Y = 3X example employed in Section 2.1 (Figure 4). An
OLS regression line was determined, with uncertainties estimated by 10,000 parametric bootstraps of the data
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uncertainties (see Section 1). The OLS gradient estimates are centered around 1.5 and demonstrate bias resulting
from regression dilution. Furthermore, the OLS 95% confidence interval of 1.21–1.77 for the gradient does not
contain the true value, therefore it must be inferred that the gradient uncertainty is underestimated. The likelihood
function for the Bayesian EIV was integrated between X = − 5 and 5. The prior on the regression model was
defined by broad uniform Y distributions between − 30 and 30. The posterior distribution was sampled with the
first 1,000 samples discarded as “burnin” (to minimize the influence of the sampler initialization) and the

Figure 3. Demonstration of the scheme used to define a regression line prior. (a) The black points are the example data used in
Figure 2, plotted between the X0 and X1 integration limits of − 5 and 5, respectively. Two random numbers, Y0 and Y1, are
then drawn from a uniform distribution with limits (− 30,30) to define the points [X0,Y0] and [X1,Y1]. These points are
connected with a straight‐line, which represents one realization of the regression line prior. The blue, green, and orange lines
represent three example realizations from the prior. (b) The scheme illustrated in panel (a) yields a symmetrical triangular
distribution for the prior on the intercept. (c) The scheme illustrated in panel (a) yields a symmetrical triangular distribution
centered on zero for the prior on the gradient (see main text for details).

Figure 4. (a) Synthetic data set identical to that shown in Figure 2(a). The 95% confidence intervals for the ordinary least‐
squares (OLS) (blue) and Bayesian EIV (red) regressions are shown by shading, with thick lines indicating the median
solutions. (b) Histograms of the estimated regression gradients with dashed lines showing the 95% confidence and credible
intervals for the OLS and Bayesian EIV methods, respectively. The Bayesian EIV maximum a posteriori gradient estimate is
indicated by a solid line.
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subsequent samples “thinned” (to reduce autocorrelation) with every fiftieth sample being retained. The sampler
was run until 10,000 post‐burnin and post‐thinning samples were available. The Bayesian gradient estimates have
a 95% credible interval of 2.51–3.91 (unlike confidence intervals, there is a 95% probability that the true gradient
lies within the credible interval, given the data and prior). Additionally, the maximum a posteriori (MAP, cor-
responding to the posterior distribution mode) gradient is 3.06, which compares well with the true gradient of 3.00
(Figure 4). This demonstrates the Bayesian EIV can reliably estimate the regression gradient and does not suffer
from regression dilution.

3. Case Study
To further demonstrate the effect of OLS dilution and how Bayesian EIV can remedy this issue, we present a case
study based on the Cenozoic atmospheric CO2 reconstruction of The Cenozoic CO2 Proxy Integration Project
(CenCO2PIP) Consortium (2023). Importantly, the CenCO2PIP reconstruction was formulated by the integration
of critically evaluated CO2 paleoproxies spanning the last 66 Ma (million years ago) with a focus on uncertainty
propagation. The reconstruction considers published CO2 estimates from both marine and terrestrial records,
which were vetted to identify “top‐tier” data. CenCO2PIP combined these data into 500‐kyr windows using a
hierarchical Bayesian model to determine posterior distributions of CO2 concentration that account for un-
certainties in both proxy‐based estimates and their associated ages (The Cenozoic CO2 Proxy Integration Project
(CenCO2PIP) Consortium, 2023).

Accompanying their CO2 reconstruction, CenCO2PIP also derived a ΔGMST record (GMST relative to prein-
dustrial) based on the benthic foraminiferal δ18O compilation of Westerhold et al. (2020) and the δ18O to tem-
perature conversion of Hansen et al. (2013). The ΔGMST record was then segmented into 500‐kyr posterior
distributions with fully propagated uncertainties following the same Bayesian procedure employed for the CO2
record; however, in the case of ΔGMST the age model of Westerhold et al. (2020) was assumed to have zero
uncertainty. Readers are referred to The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Con-
sortium (2023) for full details of how the 500‐kyr windowed CO2 and ΔGMST posterior distributions were
estimated.

This case study involves estimating climate sensitivity for the Eocene (56–33.9 Ma, Gradstein and Ogg (2020)),
which was a period of high CO2 and GMST (Hansen et al., 2013). Because of the coarse temporal resolution of the
CenCO2PIP data windows it is not feasible to estimate equilibrium climate sensitivity, which focuses on feedback
processes over shorter time scales (The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Con-
sortium, 2023). Rather, estimates of Eocene S[CO2] correspond to Earth system sensitivity, which includes longer
geological scale feedback processes (The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Con-
sortium, 2023). CenCO2PIP data were selected for 35–54 Ma, which omits the Eocene–Oligocene transition
(∼33.9Ma), when permanent ice sheets started to form in Antarctica (see Hutchison et al. (2021) for a review) and
the rapid CO2 rise and fall of the Paleocene–Eocene Thermal Maximum at ∼56 Ma (Röhl et al., 2007). Thus, the
selected interval represents a greenhouse climate before the surface albedo of large continental ice sheets began to
influence the energy balance in Earth's atmosphere.

The CenCO2PIP data products include the 2.5, 25, 50, 75, and 97.5 percentiles of the ln(CO2) and ΔGMST
posterior distributions for each 500‐kyr window. The mean parameter value and uncertainty standard deviation
for each ln(CO2) and ΔGMST window was obtained by quantile‐matching estimation under the assumption of
Gaussian uncertainties (Delignette‐Muller & Dutang, 2015). Figure 5 compares the CenCO2PIP 500‐kyr window
ln(CO2) and ΔGMST posterior distribution percentile values to the corresponding percentiles from the quantile‐
matched Gaussian distributions. The similarities of the percentiles demonstrate that both the ln(CO2) and
ΔGMST uncertainties are almost Gaussian and can be readily approximated by the quantile‐matched
distributions.

Based on the relationship of Myhre et al. (1998), ln(CO2) was converted to R relative to a preindustial atmo-
spheric CO2 concentration of 280 ppm:

R = 5.35(ln(CO2) − ln(280)). (8)
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Given the form of Equation 8, if ln(CO2) has Gaussian uncertainties, then Rwill also have Gaussian uncertainties.
Specifically, the ln(CO2) Gaussian distribution defined by a mean (μln(CO2)) and standard deviation (σln(CO2)) can
be converted into a radiative forcing mean (μR) and standard deviation (σR) as.

μR = 5.35(μln(CO2) − ln(280)) (9)

σR = 5.35σln(CO2) (10)

Eocene S[CO2] was estimated via straight‐line OLS and Bayesian EIV fits. Uncertainties for the OLS regression
were estimated from 10,000 parametric bootstrap samples of the data uncertainties as described in Section 1. The
likelihood function for the Bayesian EIV was integrated between R = 0 and 15 W m− 2. Uniform ΔGMST dis-
tributions between − 1,000 and 1,000 K were selected to define priors on Y0 and Y1. Such broad distributions
ensure that the resulting triangular distributions for the regression line intercept and gradient (Section 2.2) are
effectively flat. The posterior distribution was then sampled using MCMC and the integrated autocorrelation
length (Goodman & Weare, 2010) of the resulting chain was estimated to be ∼33. This represents the number of
steps needed for the chain to “forget” its previous position. Based on the autocorrelation length, 1,000 samples
were discarded as burnin (representing ∼30 times the autocorrelation length) and the subsequent samples thinned
with every fiftieth sample being retained (representing ∼1.5 times the autocorrelation length). Such thinning
means that the MCMC samples representing the posterior distribution can be assumed to be effectively inde-
pendent of each other. The sampler was run until 10,000 post‐burnin and post‐thinning samples were available.
Based on the OLS and Bayesian EIV samples, 95% confidence intervals were determined for the regression lines
(Figure 6a) and estimates of S[CO2] are shown in Figure 6b.

The OLS and Bayesian EIV techniques yield significantly different estimates of S[CO2], with 95% confidence/
credible intervals that do not overlap. Based on these results we infer that OLS underestimates S[CO2] because of
regression dilution and as in Section 2.2 the corresponding uncertainty can be assumed to be too narrow. The
Bayesian EIV posterior S[CO2] distribution has a 95% credible interval of 2.02–2.87 K W− 1 m2 and an MAP of
2.37 KW− 1 m2. These estimates correspond to an Earth system sensitivity of 7.48–10.63 K per doubling of CO2,
with an MAP of 8.78 K per doubling of CO2.

Figure 5. (a) Each CenCO2PIP 500‐kyr window posterior distribution is represented by values corresponding to the 2.5, 25,
50, 75, and 97.5 percentiles. Given these values, each posterior was approximated by a best‐fit Gaussian distribution obtained
by quantile‐matching. For each 500‐kyr window the percentiles of the posterior distribution values were then found for the
fitted Gaussian distribution. If the posterior percentiles and Gaussian approximated percentiles fall close to a 1:1 line (red) it
implies the posterior distribution can be represented closely by a Gaussian distribution. Each black line represents the
posterior versus Gaussian approximated percentiles for a given 500‐kyr window. (a) Analysis of the ln(CO2) 500‐kyr
window posterior percentiles reveals only small deviations from a Gaussian distribution. panel (b) Same as panel (a) for the
ΔGMST 500‐kyr window posterior percentiles.
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4. Discussion
Estimates of climate sensitivity based on paleoclimate reconstructions are crucial to understanding both past and
future climate change (Sherwood et al., 2020; The Cenozoic CO2 Proxy Integration Project (CenCO2PIP)
Consortium, 2023). Obtaining paleoclimate data is challenging; therefore it must be ensured that statistical
frameworks used to infer climate sensitivity can handle uncertainties in a principled fashion.

The proposed Bayesian EIV approach allows uncertainty in both the independent and dependent variables to be
combined in a regression estimate. Although Bayesian EIV is more challenging to implement than OLS, it
produces estimates of specific climate sensitivity that should not suffer from dilution bias. As discussed in
Section 1, existing regression techniques used to estimate climate sensitivity rely on a number of assumptions
concerning the form of data uncertainty. The proposed Bayesian EIV approach can accommodate data point
specific errors in both R[X] and ΔT with any given parametric form. Furthermore, additional scatter not repre-
sented in the data point uncertainty could be readily incorporated into the Bayesian EIV formulation. For
example, beyond their individual uncertainties, temperature observations may exhibit additional scatter resulting
from unobserved processes. If such uncertainties can be formulated in terms of probability distributions, they can
be incorporated into the Bayesian EIV model. We only discuss this concept in general‐terms because adjustments
to the model will depend specifically on the data under consideration. As an example, consider GMST estimates
with known Gaussian distributed uncertainties (σT) that exhibit additional Gaussian scatter (σϵ) resulting from
unobserved forcing. If these two sources of uncertainty are independent they can be combined in quadrature for
each data point (Taylor, 1997):

ξi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2Ti
+ σ2ϵ

√

. (11)

The σϵ term can then be estimated as part of the Bayesian EIV regression model with the likelihood modified to
include ξi, rather than σT , and selection of an appropriate prior for p(σϵ).

Thus, the strength of Bayesian EIV regression is an ability to define the uncertainty structure of the data fully,
which in turn forms the basis of a rigorous estimate of climate sensitivity. This does limit the application of the
Bayesian EIV approach to data with properly quantified uncertainties. As demonstrated by CenCO2PIP; how-
ever, large‐scale paleoclimate reconstructions are placing a priority on uncertainty quantification. Therefore,
Bayesian EIV is a timely addition to the statistical estimation of climate sensitivity.

Figure 6. (a, b) same format as Figure 4 for the CenCO2PIP Eocene atmospheric CO2 and ΔGMST records between 54 and
35 Ma.
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Bayesian EIV produced a posterior distribution for S[CO2] with a 95% credible interval of 2.02–2.87 K W− 1 m2.
The Bayesian EIV credible interval is consistent with previous estimates of S[CO2] for an ice‐free world. For
example, PALAEOSENS Project Members (2012) estimated S[CO2] with a 95% confidence interval of 1.20–
4.96 K W− 1 m2. Furthermore, based on a plot of ln(CO2) and ΔGMST, CenCO2PIP inferred Eocene S[CO2] to be
∼2.2 K W− 1 m2, which is consistent with the Bayesian EIV MAP of 2.37 K W− 1 m2. Our Bayesian EIV analysis
of the Eocene therefore strengthens paleoproxy‐based evidence for higher Earth system sensitivity in past warm
periods even when the large data uncertainties are taken into consideration.

5. Conclusions
Statistical frameworks for regression‐based specific climate sensitivity estimates must consider uncertainties in a
principled fashion. OLS regression assumes that uncertainties in estimated radiative forcing are negligible; if this
assumption is not met the estimated sensitivity will be biased toward zero. This implies that paleoclimate‐based
sensitivity could be underestimated, and the temperature response to future greenhouse gas emission pathways
could in turn be underestimated. The Bayesian EIV method presented here provides a symmetrical likelihood‐
based approach to regression, which can consider uncertainties of any given parametric form in both radiative
forcing and GMST. The development of rigorous statistical approaches has been identified as a challenge for
climate sensitivity estimation (von der Heydt et al., 2016). Bayesian EIV represents a step toward addressing this
challenge in regression‐based estimates of specific climate sensitivity.

Applying Bayesian EIV to the estimation of Eocene S[CO2] yielded an MAP climate sensitivity of 2.37 KW− 1 m2,
with a 95% credible interval of 2.02–2.87 KW− 1 m2. This corresponds to an MAP of 8.78 K per doubling of CO2
and supports previous studies that hypothesized that climate sensitivity was higher during the Eocene than the
present day.

Data Availability Statement
Python code and Jupyter notebooks to recreate the calculations presented in this work are available on Zenodo
(Heslop, 2024).
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