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Abstract The Paleocene‐Eocene Thermal Maximum (PETM) was a climate/carbon cycle perturbation
recognized in stable carbon isotope (δ13C) records with a negative carbon isotope excursion (CIE). The PETM
CIE termination has been associated with a δ13C inflection with pre‐PETM‐like values referred to as theG point.
However, the G point approach has produced variable PETM CIE duration estimates (∼120–230 kyr), which
reflects a need to test its reliability. Here, we apply statistical analyses to existing δ13C records and reveal that
the G point is sensitive to underlying δ13C uncertainties. We generate a probabilistic‐based CIE detection limit,
which constrains the time range over which the PETM is detected in δ13C records. This protocol reveals a
protracted CIE recovery (>145 kyr) that accounts for a 268.8+21.2/− 20.5 kyr PETM CIE duration. Our new
duration estimate exceeds previous values, which confirms the potential of extreme carbon cycle perturbations
to cause long‐lasting carbon cycle disruptions.

Plain Language Summary Ancient global warming events can be used to better understand future
impacts of anthropogenic global warming; however, the extent to which a massive carbon cycle perturbation can
disrupt the carbon cycle remains elusive. Here, we constrain the duration of the largest climate/carbon cycle
perturbation of the last ∼65 Ma, the Paleocene‐Eocene Thermal Maximum (PETM). The PETM duration has
been widely studied using its signature in stable carbon isotope (δ13C) records, a negative carbon isotope
excursion (CIE). We find that the previous concept to estimate the PETMCIE duration using δ13C signals is not
replicable. Therefore, we develop a statistical approach that accounts for the recognizable PETMCIE signal. This
new concept reveals a 268.8+21.2/− 20.5 kyr PETM CIE duration, which is longer than previous ∼120–230 kyr
estimates and suggests that carbon cycle perturbations have protracted impacts on the natural carbon cycle.

1. Introduction
Anthropogenic global warming is driven by exceptional carbon emission rates that have not been recorded in
natural records over the past ∼65 Ma (Allen et al., 2009; Matthews et al., 2009; Solomon et al., 2009; Zeebe
et al., 2016). This human‐driven climate perturbation is expected to disrupt the natural carbon cycle for a ∼3–
165 kyr period, which is defined as the anthropogenic carbon lifetime (Archer, 2005; Archer et al., 2009; Eby
et al., 2009; Lord et al., 2016; Montenegro et al., 2007; Zeebe, 2013). This wide range of estimates is given by e‐
folding timescales of exponential decay functions that describe carbon removal trajectories based on carbon cycle
models (Archer et al., 2009). However, the temporal extent to which a carbon release disturbs the carbon cycle
remains uncertain because carbon cycle models depend on variable setup conditions such as carbon injection
magnitudes, inclusion of time‐dependent positive carbon cycle feedbacks, and/or addition of contrasting carbon
removal mechanisms (Archer, 2005; Archer et al., 2009; Colbourn et al., 2015; Eby et al., 2009; Lord et al., 2016;
Zeebe, 2013; Zeebe & Zachos, 2013). Geological global warming events offer opportunities to gauge natural
recovery timescales from major carbon cycle perturbations (e.g., Bowen & Zachos, 2010; Penman &
Zachos, 2018; Piedrahita et al., 2023; Zeebe et al., 2017). Here, we make such an assessment for the greatest
Cenozoic carbon cycle perturbation, the Paleocene‐Eocene Thermal Maximum (PETM; ∼56 Ma).
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The Paleocene‐Eocene Thermal Maximum (PETM) was a global warming event that caused a ∼5–9°C tem-
perature increase, ocean acidification, and major ecological disruption (McInerney & Wing, 2011; Secord
et al., 2012; Wing et al., 2005; Zachos et al., 2005). This event was triggered by a ∼3,000–20,000 Pg injection of
isotopically light carbon from a reservoir external to the climate system (Elling et al., 2019; Gutjahr et al., 2017;
Haynes & Hönisch, 2020; McInerney & Wing, 2011), which punctuated a long‐term hothouse state with similar
temperatures to those projected by the shared socio‐economic pathway (SSP) 8.5 of the Intergovernmental Panel
on Climate Change (IPCC) over the next three centuries (IPCC, 2021; Westerhold et al., 2020). The lower end of
PETM carbon mass estimates is close to the 2,390 ± 240 Pg of anthropogenic CO2 released from 1850 to 2019
(IPCC, 2021), and the potential ∼5,000 Pg of carbon predicted to result from fossil fuel consumption over up-
coming centuries (Rogner, 1997). However, carbon cycle models and cyclostratigraphic frameworks suggest that
PETM carbon emissions were an order of magnitude slower than current anthropogenic emissions (Kirtland
Turner et al., 2017; Li et al., 2022; Zeebe et al., 2016). These observations indicate that human‐induced carbon
emissions, which occur along with an increasing temperature trend, are likely to cause a similarly dramatic carbon
cycle perturbation through activation of negative carbon cycle feedbacks (Gingerich, 2019). Hence, the PETM
may be used to better understand possible anthropogenic influences on the natural carbon cycle (McInerney &
Wing, 2011).

The PETM is recognized in geological stable carbon isotope (δ13C) records by a negative carbon isotope
excursion (CIE) that is divided into different phases (Figure 1; McInerney & Wing, 2011). An initial PETM CIE
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Figure 1. (a) Paleogeographic reconstruction at ∼56 Ma (Pogge von Strandmann et al., 2021) with locations of the studied
Paleocene‐Eocene Thermal Maximum (PETM) δ13C records from (b) Bighorn Basin, (c) Contessa Road, (d) ODP Site 1209,
(e) ODP Site 690, (f) ODP Site 1266, and (g) ODP Site 1262. White dots represent raw data; continuous dark lines indicate
the mean δ13C, with envelopes surrounding these lines indicating±2 standard error (2SE) intervals. Horizontal lines for each
record represent different PETM carbon isotope excursion (CIE) phases. Dark‐ and sky‐blue arrows indicate the G point
according to previous studies (van der Meulen et al., 2020; Westerhold, Röhl, Wilkens, et al., 2018) and similar δ13C
inflections referred to as G point candidates, respectively.
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onset phase is represented by a sudden δ13C drop that indicates a massive light carbon injection with a ∼4–21 kyr
duration (see Supporting Information S1; Murphy et al., 2010; Zeebe et al., 2016; Kirtland Turner et al., 2017; Li
et al., 2022). This phase was followed by a so‐called PETMCIE body phase, which was a∼100 kyr‐long period of
ongoing greenhouse gas emissions that resulted from volcanic activity, oxidation of remobilized sedimentary
fossil carbon, decline of terrestrial biosphere stocks, and/or thermal destabilization of methane hydrates, ther-
mogenic methane or permafrost (see Supporting Information S1; Bowen, 2013; Bowen & Zachos, 2010; DeConto
et al., 2012; Frieling et al., 2016; Kender et al., 2021; Lyons et al., 2019; Zeebe et al., 2009). These light carbon
injections during the PETMCIE body caused contrasting regional δ13C responses with prolonged intervals of low
δ13C values in some records, and multiple δ13C increases and decreases in others (Figures 1b–1g).

The PETM CIE body was followed by the PETM recovery, which was a carbon sequestration period indicated by
a transition from lower to higher δ13C values (Figures 1b–1g; see Supporting Information S1). This ubiquitous
pattern has been used to represent PETM carbon removal trajectories with exponential decay fits (Bowen, 2013;
Bowen& Zachos, 2010; Piedrahita et al., 2023), which have e‐folding timescales of∼8–38 kyr that are an order of
magnitude shorter than those for silicate weathering (Bowen, 2013; Colbourn et al., 2015; Lord et al., 2016;
Piedrahita et al., 2023). Such recovery e‐folding timescales have been associated with accelerated light carbon
removal promoted by optimized terrestrial biosphere carbon uptake and the oceanic biological pump
(Bowen, 2013; Bowen & Zachos, 2010; Komar & Zeebe, 2017; Ma et al., 2014).

Proxy data reveal that accelerated organic carbon burial occurred in the initial ∼30–40 kyr of the PETM recovery
phase (Bowen & Zachos, 2010; Ma et al., 2014). This interval gave way—in accordance with exponential decay
functions (Bowen & Zachos, 2010; Piedrahita et al., 2023)—to a longer‐term PETM CIE recovery trajectory that
eventually ended the CIE. Duration estimates for the PETMCIE recovery range from ∼40 to∼120 kyr, assuming
that it ended at the so‐called G point (Giusberti et al., 2007; Murphy et al., 2010; Röhl et al., 2000, 2007; van der
Meulen et al., 2020; Westerhold, Röhl, Wilkens, et al., 2018). The G point is typically identified arbitrarily as the
inflection point where δ13C became similar to pre‐PETM δ13C values, and has been used to obtain PETM CIE
duration estimates in the 120–230 kyr range (see Supporting Information; Aziz et al., 2008; Farley & Elt-
groth, 2003; Giusberti et al., 2007; Murphy et al., 2010; Röhl et al., 2000, 2007; van der Meulen et al., 2020;
Westerhold, Röhl, Wilkens, et al., 2018; Zeebe & Lourens, 2019).

The wide range of PETM CIE duration estimates may partially result from a lack of consistent criteria to select
the G point within noisy δ13C records (Figures 1b–1g). Here, we study the PETM CIE recovery interval in
well‐resolved sedimentary sections to better identify the bounds of the δ13C anomaly that defines the PETM
CIE. We present probabilistic assessments using available high‐resolution δ13C records and age models
for Bighorn Basin (North America), Contessa Road (western Tethys Ocean), and Ocean Drilling Program
(ODP) Sites 1209 (northwestern Pacific Ocean), 690 (Southern Ocean), 1262, and 1266 (South Atlantic
Ocean) to assess the reliability of the G point approach and to provide a statistical protocol to estimate the
PETM CIE duration.

2. Materials and Methods
2.1. Study Sites

We study here one terrestrial and five marine PETM sedimentary sections with high‐resolution δ13C records,
which allow a global assessment of the PETM CIE duration and clear identification of the event phases. These
PETM sections also have well‐developed age models, whose reliability has been demonstrated in previous
studies (see Supporting Information S1). Therefore, we do not generate new age models or δ13C records and use
these available data sets to perform probabilistic assessments (see below). The studied terrestrial site corresponds
to a Bighorn Basin composite section with a high‐resolution δ13C carbonate nodule record (Figure 1b; van der
Meulen et al., 2020). We also study bulk‐rock δ13C records from marine sediment sections such as the Contessa
Road (western Tethys), ODP Site 690 (Southern Ocean), and ODP Sites 1262 and 1266 (South Atlantic Ocean),
and a benthic foraminiferal (Nuttallides truempyi) δ13C record from ODP Site 1209 (northwestern Pacific Ocean)
(see Supporting Information S1; Giusberti et al., 2009; Galeotti et al., 2010; Littler et al., 2014; Piedrahita
et al., 2022, 2023; Röhl et al., 2007; Thomas, 1990; Westerhold et al., 2007, 2011; Westerhold, Röhl, Wilkens,
et al., 2018; Westerhold, Röhl, Donner, et al., 2018; Zachos et al., 2005).
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2.2. Probabilistic Uncertainty Assessments

2.2.1. δ13C Error Propagation

PETM δ13C records have been typically studied using raw data, without considering analytical and chronological
uncertainties. Here, we apply a Monte Carlo‐based protocol for error propagation in δ13C records from Bighorn
Basin and ODP Sites 1209, 690, 1262, and 1266. A similar probabilistic assessment for the Contessa Road δ13C
record (Piedrahita et al., 2023) is also included here. Given the lack of reported analytical uncertainties, Bighorn
Basin and ODP Sites 1209, 690, 1262, and 1266 δ13C datapoints were assigned 0.06‰ standard deviations (1σ),
which represents the external reproducibility of most δ13C analyses (e.g., Piedrahita et al., 2023). Next, age errors
were included based on each age model as follows. Half the age spacing between successive samples was
considered as a standard deviation (1σ) for ODP Site 1262 because of its relatively uniform measurement res-
olution across its δ13C record. The other PETM δ13C records have contrasting measurement resolutions between
their CIE phases–i.e., half the age spacing between successive samples range from ∼0.4 kyr to ∼13 kyr–which
hinders application of our Monte Carlo‐based approach. Therefore, we assigned the average half age spacing
between successive samples as the 1σ standard deviation for Bighorn Basin (1σ = 0.3 kyr), ODP Site 1209
(1σ = 3.7 kyr), ODP Site 690 (1σ = 1.5 kyr), and ODP Site 1266 (1σ = 2.1 kyr). We then performed a Monte
Carlo‐based re‐sampling that generates 10,000 random data points within the δ13C and age uncertainties. This
protocol produces empirical δ13C distributions at each age step, from which the mean and standard error were
estimated. Data were reviewed systematically after Monte Carlo simulations to avoid age reversals and to
maintain stratigraphic order. Finally, data were interpolated to the fixed age points of each age model, which
allowed generation of probabilistic‐based δ13C records.

2.2.2. Exponential Decay Functions Across the PETM CIE Recovery Interval

Exponential decay functions were fitted to the probabilistic‐based δ13C records to assess δ13C trajectories during
the PETMCIE recovery (e.g., Bowen, 2013; Bowen & Zachos, 2010; Piedrahita et al., 2023). Specifically, 10,000
least‐squares exponential decay fits, expressed as f(x,β) = β0 · eβ1·x + β2, were generated using Monte Carlo
simulations. Probability distributions of the fitted functions were obtained at each time‐step and the 50th
percentile (median) and 2.5th to 97.5th percentiles (95% confidence interval) were estimated. e‐folding timescales
were estimated from the equation coefficients (e‐folding = 1/

⃒
⃒β1
⃒
⃒), and reduced chi‐square (χ2) statistics were

used to assess the goodness of the modeled exponential decay functions with respect to the analyzed data.

2.2.3. Bootstrap Resampling

To obtain a single numerical estimate for the PETM CIE duration and its recovery, different groups of age es-
timates obtained here (see Discussion) were used to generate 10,000 iterations via bootstrapping with replace-
ment. The median and 95% confidence interval were estimated from the empirical distributions produced for each
data group.

3. Results
Our probabilistic δ13C records highlight key features of the original PETM δ13C records. At Bighorn Basin,
Contessa Road, and ODP Site 1209, a sudden δ13C drop marks the CIE onset (Figures 1b–1d). A similar δ13C
decrease is identified at ODP Site 690; however, δ13C decreased continuously until stabilizing ∼70 kyr after the
onset (Figure 1e). ODP Sites 1262 and 1266 do not have δ13C data at the CIE onset (Figures 1f and 1g) due to
extensive CaCO3 dissolution caused by ocean acidification during the initial light carbon injection (Zachos
et al., 2005). The PETM CIE onset is followed by the body phase, which at Bighorn Basin and ODP Sites 690,
1262, and 1266 is represented by sustained low δ13C values (Figures 1b, 1e–1g). The CIE body at Contessa Road
has a gradual δ13C increase following the CIE onset and is punctuated by a second smaller δ13C drop∼80 kyr after
the PETM CIE onset (Piedrahita et al., 2023). A similar pattern is identified in the probabilistic δ13C record from
ODP Site 1209 although this section does not contain a second δ13C drop (Figures 1c and 1d). The CIE recovery
in all sections is marked by a continuous, irreversible, δ13C increase that starts ∼100 kyr after the CIE onset
(Figures 1b–1g).

Exponential decay functions fitted to CIE recovery intervals of the δ13C records (Figure 2) reveal similar e‐
folding timescales for Contessa Road, and ODP Sites 1209, 1262, and 1266 (34.6+3.3/− 4.0 kyr to 43.1

+2.6/− 2.5 kyr
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(median ± 95% confidence interval). χ2 values for exponential fits to the Contessa Road, and ODP Sites 1209,
1262, and 1266 data range from 0.6+0.02/− 0.02 to 1.8

+0.13/− 0.14, which suggests that the modeled exponential decay
functions properly fit the analyzed data (Figures 2b and 2c, 2d–2e, 3a–3b). At Bighorn Basin, the e‐folding is
slightly smaller (22.9+0.3/− 0.3 kyr), while it is higher at ODP Site 690 (e‐folding = 83.5

+11.3/− 9.6 kyr) (Figures 2d
and 3a). The latter two sections have χ2 values > 2.7, which are higher than those from the remaining records, and
suggest that exponential decay functions do not accurately fit the analyzed data (Figures 2a and 2d, 3a, 3b).

Figure 2. Exponential decay functions presented in terms of their 95% confidence intervals (black) for the PETM CIE
recovery interval at (a) Bighorn Basin, (b) Contessa Road, (c) ODP Site 1209, (d) ODP Site 690, (e) ODP Site 1262, and
(f) ODP Site 1266. Background δ13C records are indicated in dark (mean) and light shading (±2 standard error (2SE)). Age
scales are based on the PETM CIE recovery onset according to the age model for each studied section.
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4. Discussion
4.1. δ13C Recovery Patterns and G Point Reliability

The exponential decay approach used here for the PETM CIE recovery produces adequate fits (χ2 < ∼1.8) with
overlapping e‐folding timescales (∼35–43 kyr; Figures 3a and 3b) for Contessa Road and ODP Sites 1209, 1262,
and 1266 despite the different CIE body features (Figures 1c and 1d, 1f and 1g), paleogeographic positions,
paleowater depths, and microfossil assemblages of these sections (see Supporting Information S1). These
exponential δ13C recovery patterns are similar to those identified in previous carbon removal trajectory assess-
ments following PETM light carbon injections, which reflects a generalized δ13C pattern during the PETM CIE
recovery phase (Bowen, 2013; Bowen & Zachos, 2010; Komar & Zeebe, 2017; Penman et al., 2020; Piedrahita
et al., 2023). However, PETM CIE recovery at Bighorn Basin and ODP Site 690 cannot be represented
by exponential decay functions (χ2 > ∼2.7; Figure 3b), which contrasts with prior assessments for the same sites
(e.g., Bowen & Zachos, 2010). These differences may result from addition of further δ13C datapoints that have
modified previously evaluated data sets. This may be the case for the Bighorn Basin section, which has a noisy
δ13C record that may hinder exponential fitting across the PETM CIE recovery (Figure 2a). Alternatively, in-
clusion of our error propagation protocol in the ODP 690 analysis could limit the use of exponential decay fits due
to a measurement gap in the recovery phase of this site. Contrasting Bighorn Basin and ODP Site 690 CIE re-
covery patterns with respect to the other sites may also indicate regional controls on these δ13C records− that is,
local hydroclimate changes that impact chemical weathering and/or organic carbon removal− , and/or variable
marine and terrestrial δ13C responses to global carbon removal trends. Given these limitations, we exclude
exponential decay fits for Bighorn Basin and ODP Site 690 from further analysis here.

Similarities between PETMCIE recovery patterns at Contessa Road and ODP Sites 1209, 1262, and 1266 suggest
that relative PETM CIE durations, and, therefore, the G point, should be almost identical among δ13C records.
However, δ13C inflections similar to the G point occur at multiple ages (Figures 1c and 1d, 1f and 1g). Well‐

Figure 3. Probability density distributions for (a) e‐folding and (b) χ2 values of exponential decay functions from each studied
δ13C record. (c) Modeled exponential decay functions for normalized δ13C values (100%) that decay at rates defined by e‐
folding timescales (ODP Site 1209 = 43.1 kyr, ODP Site 1262 = 37.9 kyr, Contessa Road = 36.7 kyr and ODP Site
1266= 34.6 kyr). The PETMCIE detection limit is indicated by a gray rectangle that is limited by the 0.6%–2.2% interval (see
Supporting Information S1). Durations in white rectangles represent PETM CIE recovery duration estimates for each section,
while values in bold letters represent probabilistic‐based PETMCIE recovery duration estimates for each PETMCIE detection
boundary. (d) Probability density distribution for the PETM CIE duration. The median and 95% confidence interval of this
distribution are indicated as our probabilistic‐based PETM CIE duration estimate.
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developed exponential decay fits across these sites reveal gradual δ13C flattening across the PETM CIE recovery
instead of a clear G point δ13C inflection (Figures 1b–1g and 2). Furthermore, our probabilistic assessments
indicate that the interval where the G point has been recognized (e.g., Murphy et al., 2010; Röhl et al., 2007; van
der Meulen et al., 2020; Westerhold, Röhl, Wilkens, et al., 2018; Zeebe & Lourens, 2019) consists of a series of
datapoints with overlapping uncertainties (see error envelopes in Figures 1b–1g). This reveals that the G point
detection approach is sensitive to noise and underlying δ13C signal uncertainties, which limits the value of this
protocol to determine the PETM CIE endpoint. δ13C error envelopes also indicate overlapping values across the
PETMCIE body, which hinders identification of δ13C inflections related to PETM tie points that were recognized
in prior PETMCIE age models (see Supporting Information S1; Bains et al., 1999). Probabilistic assessments still
allow clear recognition of the PETM CIE onset, body and recovery (Figures 1b–1g), and they also reveal that
subjective, visual identification of a particular δ13C inflection with pre‐PETM‐like values during the PETM CIE
recovery cannot be used to recognize PETM CIE termination.

4.2. A New Statistical Approach to Estimate PETM CIE Duration

Exponential δ13C recovery functions reveal a protracted PETMCIEduration.Our∼30–40 kyr e‐folding timescales
of exponential δ13C recovery fits are similar to those of previous studies, and consequently reflect accelerated
carbon removal compared to silicate weathering (>100 kyr e‐folding values; Bowen & Zachos, 2010;
Bowen, 2013; Colbourn et al., 2015; Lord et al., 2016; Penman et al., 2020; Piedrahita et al., 2023).We interpret our
estimates to depend on enhanced organic carbon burial, which was enhanced during a ∼30–40 kyr period at the
commencement of the PETM CIE recovery phase (Bowen & Zachos, 2010; Ma et al., 2014). However, organic
carbon sequestration occurred alongside with optimized chemical weathering, which resulted from exceptional
PETMwarming (Penman et al., 2016, 2020; Pogge von Strandmann et al., 2021; Torfstein et al., 2010); hence, we
infer that accelerated organic carbon uptake and long‐term chemical weathering slowly diminished the PETMCIE
in δ13C records, and stabilized the carbon cycle (Penman et al., 2016, 2020; Pogge von Strandmann et al., 2021).

The interval of gradual δ13C flattening following accelerated organic carbon uptake is used here to generate a
PETMCIE detection limit based on statistical and geological criteria. This method allows estimation of the extent
to which the PETM CIE is recognized in δ13C records. Initially, we transferred the 95% confidence interval of
each datapoint from accurate exponential decay functions to a percentage with respect to the median (see Sup-
porting Information S1). The average 95% confidence interval was estimated for each site, excluding initial
periods equivalent to e‐folding timescales, where δ13C signals rapidly increase and are not gradually flattened.
Average errors of 0.6% for Contessa Road and ODP Site 1262, 1.0% for ODP Site 1209%, and 2.2% for ODP Site
1266 were obtained. The highest and lowest average errors were assumed to represent the lower and upper
boundaries of an error threshold below which an initial magnitude of 100% does not represent statistical
exceedances (see Supporting Information S1). Following this protocol, a detection limit that accounts for the
recognizable PETM CIE recovery signal in δ13C records can be defined by an upper (2.2%) and a lower (0.6%)
boundary that represent ∼4 and ∼5 e‐folding timescales, respectively (Figure 3c). To obtain PETM CIE recovery
duration estimates, the δ13C datapoint that marks the PETM CIE recovery onset was normalized to 100% and
assigned a 0 kyr age. This magnitude was forced to decay at different rates defined by the e‐folding timescales of
Contessa Road and ODP Sites 1209, 1262, and 1266. This approach reveals PETM CIE recovery duration es-
timates of ∼132.1 kyr, ∼140.1 kyr, ∼144.6 and ∼164.5 kyr for the upper recognizable CIE recovery boundary,
and ∼177.0 kyr, ∼187.8 kyr, ∼193.9 kyr and ∼220.5 for the lower PETM CIE detection limit (Figure 3c). Via
bootstrap resampling (see Materials and methods), single PETM CIE recovery duration estimates for the upper
(145.3+13.1/− 10.1 kyr) and lower (194.8

+17.5/− 13.6 kyr) CIE detection boundaries were obtained (Figure 3c).

4.3. A Longer PETM CIE Duration

Our new PETM CIE recovery duration estimates are longer than those of previous studies (∼40–120 kyr) (Aziz
et al., 2008; Farley & Eltgroth, 2003; Giusberti et al., 2007; Murphy et al., 2010; van der Meulen et al., 2020;
Westerhold et al., 2007; Zeebe & Lourens, 2019). Considering that most carbon cycle models reveal carbon
removal periods exceeding those of carbon injections (e.g., Archer, 2005; Eby et al., 2009; Montenegro
et al., 2007; Zeebe, 2013), and given the large magnitude of PETM carbon releases and their associated∼100 kyr‐
long CIE body (Elling et al., 2019; McInerney & Wing, 2011), our PETM CIE recovery duration estimates seem
plausible and can be seen within the context of organic carbon removal and chemical weathering (e.g., Penman
et al., 2020). These longer PETMCIE recovery duration estimates can be used to constrain locally the PETMCIE
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duration for Contessa Road (∼236.7–284.5 kyr), and ODP Sites 1209 (∼268.5–324.5 kyr), 1262 (∼235.1–
284.4 kyr), and 1266 (∼236.0–281.0 kyr). Using bootstrap resampling (see Materials and methods), a
268.8+21.2/− 20.5 kyr (median ± 95% confidence interval; Figure 3d) PETM CIE duration estimate is produced.
This value may be modified by addition of further well‐resolved δ13C records; however, the global coverage of
our assessment, and the inclusion of a probabilistic‐based approach that indicates similar PETM δ13C recovery
rates among several locations, suggest that our new estimate is reliable. Our estimated 268.8+21.2/− 20.5 kyr PETM
CIE duration overlaps within uncertainties some previous values of 217+44/− 31 kyr and 231 ± 22 kyr (Giusberti
et al., 2007; Murphy et al., 2010), but is substantially longer than the ∼120–220 kyr durations obtained from most
studies (Aziz et al., 2008; Farley & Eltgroth, 2003; Röhl et al., 2000, 2007; van der Meulen et al., 2020;
Westerhold, Röhl, Wilkens, et al., 2018; Zeebe & Lourens, 2019).

Our new probabilistic PETM CIE duration estimate corroborates the view that a massive carbon cycle pertur-
bation is likely to disrupt the natural carbon cycle for hundreds of thousands of years. However, our∼35–43 kyr e‐
folding timescales have been reproduced successfully only by carbon cycle models with e‐folding values that
exceed common <10 kyr anthropogenic carbon lifetime estimates (Archer, 2005; Archer et al., 2009; Eby
et al., 2009; Lord et al., 2016; Montenegro et al., 2007; Zeebe, 2013). Hence, the long duration of the recognizable
PETM CIE signal in δ13C records reveals that a massive carbon cycle perturbation, which can be triggered in
association with a future SSP 8.5 global warming scenario (Gingerich, 2019; IPCC, 2021; Zeebe, 2013), is likely
to disrupt the carbon cycle over periods that are longer than those predicted by most carbon cycle models.
Although detailed comparison between anthropogenic carbon and PETM δ13C e‐folding timescales is compli-
cated (e.g., Archer, 2005; Eby et al., 2009; Montenegro et al., 2007; Zeebe, 2013), our duration estimates for the
PETM CIE recovery far exceed societally relevant timescales, which emphasizes the pressing need to limit and
reverse anthropogenic greenhouse gas emissions.

5. Conclusions
PETM CIE recovery intervals at Contessa Road, and ODP sites 1209, 1262, and 1266 can be represented by
exponential decay functions with similar e‐folding timescales that coincide with widespread acceleration of
organic carbon burial. Long‐term carbon sequestration following this period should have removed the recog-
nizable PETM CIE signal in δ13C records; however, the PETM CIE endpoint cannot be determined unambig-
uously using the traditionalG point concept because of its sensitivity to noise and uncertainty. We describe a new
protocol associated with a CIE detection limit that produces PETM CIE recovery duration estimates of
145.3+13.1/− 10.1 kyr and 194.8

+17.5/− 13.6 kyr, which result in a 268.8
+21.2/− 20.5 kyr PETM CIE duration. This new

estimate compared to previous studies reveals that extreme carbon cycle perturbations are likely to disrupt the
carbon cycle for longer periods that those projected by most carbon cycle models.
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