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Abstract

Pre-Quaternary terrestrial climate variability is less well understood than that during the Quaternary. The continuous
eolian Red Clay sequence underlying the well-known Quaternary loess-paleosol sequence on the Chinese Loess Plateau
(CLP) provides an opportunity to study pre-Quaternary terrestrial climate variability in East Asia. Here, we present new
mineral magnetic records for a recently found Red Clay succession from Shilou area on the eastern CLP, and demonstrate
a marked East Asian climate shift across the Miocene-Pliocene boundary (MPB). Pedogenic fine-grained magnetite
populations, ranging from superparamagnetic (SP)/single domain (SD) up to small pseudo-single domain (PSD) sizes
(i.e., from <30 nm up to ~1000 nm), dominate the magnetic properties. Importantly, our mineral magnetic results indicate
that both pedogenic formation of SP grains and transformation of SP grains to SD and small PSD grains accelerated
across the MPB in the Shilou Red Clay, which are indicative of enhanced pedogenesis. We relate this enhanced pedogen-
esis to increased soil moisture availability on the CLP, associated with stronger Asian Summer Monsoon precipitation
during an overall period of global cooling. Our study thus provides new insights into the Miocene-Pliocene climate transi-
tion in East Asia.
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INTRODUCTION

The Chinese Loess Plateau (CLP) hosts a vast expanse
(~300,000 km2) of thick eolian dust deposits that provide
a globally outstanding terrestrial archive of Late Cenozoic
climatic and environmental changes (Liu, 1985; An, 2014).
These eolian deposits can be divided into two parts: the
well-known Quaternary loess-paleosol sequence and the
underlying Miocene-Pliocene Red Clay sequence. While the
climatic history recorded by Quaternary loess-paleosol
sequences is relatively well constrained, the climatic

significance of Red Clay sequences is far from established
(An, 2014; Ao et al., 2016; Nie et al., 2016). Existing
Miocene-Pliocene paleoclimate records from the semi-arid
CLP (An et al., 2001, 2005; Nie et al., 2014; Ao et al., 2016),
arid western China (Miao et al., 2012), and humid South
China (Clift et al., 2014) provide contrasting information on
climate variability over this time interval.
Formation of fine magnetic grains (from <30 nm up to

~1000 nm) in the Chinese loess-paleosol and Red Clay
deposits, including superparamagnetic (SP), stable single
domain (SD), and small pseudo-single-domain (PSD) particles,
is closely linked to in situ pedogenic weathering modulated by
climate and can be quantified using magnetic techniques
(Zhou et al., 1990; An et al., 1991; Verosub et al., 1993;
Evans and Heller, 1994; Heller and Evans, 1995; An et al.,
2001; Liu et al., 2003, 2004; Bloemendal and Liu, 2005;
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Nie et al., 2008; Ao et al., 2016). Therefore, magnetic para-
meters are widely used to investigate pedogenic weathering,
monsoon evolution, aridification history, and global climate
change recorded in Quaternary loess-paleosol sequences
(Kukla et al., 1988; An et al., 1991; Verosub et al., 1993;
Florindo et al., 1999; Evans and Heller, 2001; Deng et al.,
2005, 2006; Liu et al., 2007, 2012, 2013, 2015). However,
considerably less environmental magnetic research has focused
on the underlying Miocene-Pliocene Red Clay sequences
(Nie et al., 2016). Here, we investigate late Miocene-early
Pliocene climate change in East Asia; new mineral magnetic
records of a Red Clay succession from Shilou (36°55’ N,
110°56’ E) on the eastern CLP form the basis for our
paleoclimatic interpretations.

GENERAL SETTING

The Asian monsoon, which is the most dynamic component
of the global monsoon system, is characterized by seasonal
reversal of winter and summer monsoons (Webster, 1994;

Wang et al., 2005; An et al., 2015). The Asian Winter
Monsoon (AWM) transports cold and dry air from
high-latitude Eurasia toward South China, while the Asian
Summer Monsoon (ASM) transports heat and moisture from
the equatorial oceans to North China (Wang et al., 2005;
An et al., 2015).
The Shilou Red Clay section lies between the Lüliang

Mountains and the Yellow River on the eastern CLP, at the
northern margin of ASM influence (Fig. 1). The climate and
environment of the Shilou area are dominated by a seasonal
reversal of AWM and ASM circulations. This region today
has a mean annual temperature of ~9°C and mean annual
precipitation of ~500mm, with over 60% of the precipitation
falling in the summer. The Shilou Red Clay sequence has a
thickness of up to ~90m and ranges in age from ~8.2 to
2.6Ma (Ao et al., 2016). In general, the horizontally stratified
Shilou Red Clay consists of reddish soils that are intercalated
with carbonate nodules (Fig. 1c). It has a redder color and
has experienced stronger pedogenesis than the overlying
Quaternary loess-paleosol sequence (Fig. 1c).

0 300km

Qinling Mts.

DesertLoess Plateau

35°N

40°N

110°E105°E

Mountains

Jiaxian

Tengger Desert

Shilou

70° E 130° E120° E110° E100° E90° E80° E

60° N

10° N

15° N

20° N

25° N

30° N

35° N

45° N

50° N

55° N

0 m

4000 m

3500 m

3000 m

2500 m

2000 m

1500 m

1000 m

500 m

200
300

400

600

500

40° N

Mu Us Desert

Miocene–Pliocene boundary

Dongwan

Pliocene Red Clay

Late Miocene Red Clay

Quaternary Loess

Yellow River

Lü
lia

n 
M

ts
.

Sum
m

er
 m

on
so

on

W
in

te
r m

on
so

on

10 m

(b)(a)

(c)

Tibetan Plateau Shilou

5.333 Ma (28.9 m)

Figure 1. (color online) Schematic map of the site location and geological setting. (a) Map of Asian topography. (b) Map of the Chinese
Loess Plateau with location of the studied Shilou red clay section. The Yellow River is the major river system in North China. The dashed
red lines denote contours of mean annual precipitation (mm) on the Chinese Loess Plateau. (c) Field photograph of the Shilou-A red clay
section. The upper part (Pliocene) has a distinctly redder color than the lower part (Late Miocene), which is consistent with enhanced
pedogenesis and increased summer monsoon precipitation across the Miocene-Pliocene boundary.
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This study focuses on the ~70-m-thick Shilou Red Clay
section studied by Xu et al. (2009) (here named the Shilou-A
section), which is located ~1 km east of our recently inves-
tigated section with ~90-m-thick Shilou Red Clay (here
referred to as the Shilou-B section; Ao et al., 2016). Two
previous correlations of the Shilou-A magnetostratigraphy to
the geomagnetic polarity timescale (GPTS) suggest con-
trasting ages of ~11–2.6Ma (from polarity subchron C5n.2n
to C2An.1n; Xu et al., 2009) and ~5.2–2.6Ma (from C3n.4n
to C2An.1n; Anwar et al., 2015) for the ~70-m-thick Shilou
Red Clay sequence. However, these magnetostratigraphic
interpretations both involve ambiguous polarity divisions,
which result in poor and equivocal correlations to the GPTS.
Furthermore, these age assignments (~11–2.6Ma or ~5.2–
2.6Ma) are inconsistent with the generally accepted age from
~8–7Ma to 2.6Ma for the Red Clay sequences on the
central and eastern CLP (Sun et al., 1998; Ding et al., 1999;
Qiang et al., 2001). In addition, the age assignment of ~5.2–
2.6Ma (Anwar et al., 2015) is not supported by the presence
of the late Miocene micromammal Meriones sp. in the lower
Shilou-A section at 46.6m (Xu et al., 2012). Our recent
magnetostratigraphy from the 90-m-thick Shilou-B section
(Ao et al., 2016), with a much higher resolution and sig-
nificantly improved definition of respective polarity zones,
enables unequivocal magnetostratigraphic correlation
(C4r.1r–C2An.1n, ~8.2–2.6Ma) to the GPTS. This results in
a revised correlation of the ~70-m-thick Shilou-A
magnetostratigraphy to the GPTS from C4n.2n to C2An.1n
(~8–2.6Ma). Thus, a chronology from 3.6 to 7.5Ma
(12.2–60.4m) for the late Miocene-early Pliocene Shilou Red
Clay within the ~70-m-thick Shilou-A succession is

established based on our updated magnetostratigraphic cor-
relation (Ao et al., 2016). The chronology was constructed
via linear interpolation using geomagnetic polarity reversals
for age control, assuming constant long-term sedimentation
rates between reversals (Fig. 2).

SAMPLING AND METHODS

After removal of the weathered outcrop surface, 703 fresh
samples were collected from the whole (~70-m-thick)
Shilou-A Red Clay succession at 10 cm stratigraphic inter-
vals (equivalent to a time spacing of ~8 ka). A total of 473
samples from the 12.2–60.4m interval (3.6 to 7.5Ma) were
selected for the present study. Samples were powdered and
then packed into non-magnetic cubic boxes for low-
frequency magnetic susceptibility (χlf) measurements in the
laboratory. χlf was measured with a Bartington Instruments
MS2 magnetic susceptibility meter at 470 Hz. An anhys-
teretic remanent magnetization (ARM) was imparted using a
peak alternating field (AF) of 100mT and a 0.05mT direct
current (DC) bias field, and was measured using a 2-G
Enterprises superconducting rock magnetometer (model
755R) housed in a magnetically shielded room. ARM is
expressed in terms of the ARM susceptibility (χARM), which
was obtained by dividing ARM intensity by the DC field
strength.
Temperature-dependent susceptibility (χ-T) curves were

measured in an argon atmosphere (with an argon flow rate of
100mL/min) from room temperature to 700°C and back
to room temperature using a MFK1-FA susceptometer
equipped with a CS-3 high-temperature furnace (AGICO,
Brno, Czech Republic). A χ run with an empty furnace tube
was measured to determine the temperature-dependent
background before measuring the sediment samples. The
susceptibility of each sediment sample was obtained by
subtracting the measured furnace tube background χ using
the CUREVAL 5.0 program (AGICO, Brno, Czech
Republic). Isothermal remnant magnetization (IRM) acqui-
sition curves were measured at 30 field steps up to a max-
imum field of 2 T. Samples were magnetized with an ASC
IM-10-30 pulse magnetizer, and IRMs were measured with
an AGICO JR-6A spinner magnetometer. First-order reversal
curve (FORC) measurements (Roberts et al., 2000, 2014)
were made using the variable resolution FORC protocol
(Zhao et al., 2015) with a Princeton Measurements
Corporation (Model 3900) vibrating sample magnetometer
(VSM). For each sample, 80 FORCs were measured at fields
up to 300mT with an averaging time of 200ms. Data were
processed using the software of Zhao et al. (2015) with a
smoothing factor of 3.

RESULTS

Heating and cooling χ-T curves are nearly reversible (Fig. 3),
which indicates that little magnetic mineral transformation
occurred during thermal treatment (Ao et al., 2009). All of the
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Figure 2. Age-depth model for the 12.2–60.4m interval of the
Shilou-A red clay succession established from the updated
magnetostratigraphic correlation (Ao et al., 2016) to the
geomagnetic polarity timescale (GPTS; Hilgen et al., 2012).
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heating curves are characterized by a major inflection at
~580°C, which corresponds to the Curie temperature of
magnetite and is consistent with the ubiquitous presence of
magnetite in Red Clay (Liu et al., 2003; Xu et al., 2009;
Ao et al., 2016). A steady increase in χ from room temperature
to ~200–300°C indicates the gradual unblocking of fine
(SP/SD) magnetite particles (Liu et al., 2005, 2010; Deng,
2008). There was no magnetic mineral transformation during
heating, so the slight drop in χ to ~400°C is possibly due to
changes in crystallinity, grain size, or morphology of magnetic
particles (Dunlop and Özdemir, 1997; Ao et al., 2012).
The measured IRM acquisition curves are characterized by

a major increase below 300mT (Fig. 4), which supports the
interpretation of a dominant contribution from magnetite.
The slight increase between 300 and 2000mT is consistent
with the presence of hematite. On a mass-specific basis,
hematite has a much weaker magnetization than magnetite
(Dunlop and Özdemir, 1997), thus large hematite con-
centrations are necessary to contribute substantially to IRM
when magnetite is also present.
All FORC diagrams have closed contours with maximum

contour density at a Bc value of ~10mT (Fig. 5), which indicates
a substantial presence of SD magnetite (Roberts et al., 2000,
2014; Egli et al., 2010). The outer contours are generally diver-
gent along the Bu axis, which points to a small PSD component
(Roberts et al., 2000, 2014; Muxworthy and Dunlop, 2002).

Magnetic parameters (e.g., χARM and χlf) and their
ratios are sensitive indicators of changes in magnetic miner-
alogy and are useful for establishing high-resolution paleo-
climatic records because such parameters can be good
proxies for important paleoenvironmental and paleoclimatic
processes (Evans and Heller, 2003; Liu et al., 2012, 2015).
For the Shilou-A Red Clay sequence, χARM and χlf have
consistent variations, which are characterized by a prominent
shift to higher values across the Miocene-Pliocene boundary
(MPB, 5.333Ma; Fig. 6a and b). Such a shift across the MPB
is better characterized in the adjacent χARM/χlf record
(Fig. 6c): χARM/χlf increases significantly from ~4.1 at
~5.6Ma to ~7.0 at ~5Ma. Overall, χARM/χlf ranges from 3.3
to 6.2 (average 5.2) during the late Miocene (7.5–5.333Ma)
and from 4.7 to 7.0 (average 5.8) during the
early Pliocene (5.333–3.6Ma; Fig. 6c). Such a χARM/χlf shift
is also observed in our recently investigated Shilou-B section
across the MPB (Ao et al., 2016; Fig. 6d). The two
χARM/χlf records have generally consistent variability,
particularly over longer periods. Minor differences between
them are probably related to different sampling intervals
(10 cm sampling interval in the ~70-m-thick Shilou-A suc-
cession, versus a 2-cm sampling interval in the ~90-m-thick
Shilou-B succession) and minor differences in sedimentary
continuity and/or short-term magnetostratigraphic age
model issues.
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Figure 3. (color online) χ-T curves for selected samples from the Shilou-A red clay sequence. The red and blue lines represent heating and
cooling curves, respectively.
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DISCUSSION

Like the overlying Quaternary loess-paleosol sequence, the
magnetic properties of the Red Clay sequence are dominated
by fine-grained pedogenic magnetite populations that
range from SP/SD to small PSD sizes, as suggested by the
aforementioned rock magnetic results and previous studies
(Nie et al., 2007, 2008, 2013; Ao et al., 2016). The SP
grains, which have high χlf values but no stable magnetic
remanence, formed during early pedogenesis. Some SP
grains could have grown to SD and even to small PSD
sizes, which have high χARM but low χlf with increased
pedogenesis (Evans and Heller, 2003; Hu et al., 2013; Nie
et al., 2013, 2014). Thus, χARM/χlf, which reflects the relative
amount of SD and small PSD magnetite grains compared
to SP grains, allows a more detailed view of pedogenic
variations in Red Clay than either χlf or χARM (Geiss and
Zanner, 2006; Nie et al., 2013, 2014). This approach is
supported by χARM/χlf variations of Quaternary loess-
paleosol sequences, with distinctly high values in pedogenic
paleosol layers and low values in loess layers (Nie et al.,
2013). Hematite has much lower magnetization and magnetic
susceptibility than magnetite; therefore, the contribution
of hematite to χARM/χlf variations is not significant when
magnetite is also present.

The notable χlf and χARM increases across the MPB in the
Shilou Red Clay indicate increases in pedogenic SP and SD
to small PSD magnetite grains, respectively. An increased
amount of SP magnetite grains is supported by a notable
increase in the frequency-dependent magnetic susceptibility
percentage (χfd%, defined as (χlf - χhf) / χlf × 100%, where χhf
is the high-frequency magnetic susceptibility) in the Shilou-B
Red Clay section across the MPB (Ao et al, 2016; Fig. 6e).
The prominent χARM/χlf increase across the MPB further
indicates an increasing percentage of SD and small PSD
magnetite grains relative to SP grains. Thus, consistent
positive shifts of χlf, χARM, χARM/χlf, and χfd% indicate
enhanced pedogenesis across the MPB on the CLP, which
accelerated both formation of SP grains and transformation of
SP grains to SD and small PSD grains. Relatively more SD
and small PSD grains formed during this type of pedogenic
enhancement, which resulted in increased χARM/χlf across the
MPB. It is unlikely that the increased PSD magnetite fraction
resulted from increased detrital input, because parallel grain
size records from the Shilou-A Red Clay do not indicate
coarser sediments and increased detrital input across the
MPB (Xu et al., 2012). In addition, the early Pliocene Shilou
Red Clay interval is redder than the underlying late Miocene
interval (Fig. 1c), and has more Fe-Mn (hydr)oxide mottles,
nodules, concretions, and coatings in soil profiles, which are
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all consistent with enhanced pedogenesis across the MPB
(Yang and Ding, 2003; Roberts, 2015; Ao et al., 2016).
Precipitation and temperature exert a primary control on

pedogenic weathering (White and Blum, 1995; White et al.,
1999; Wei et al., 2006; Clift et al., 2008). Increased pre-
cipitation can accelerate pedogenic weathering reactions by
enhancing unsaturated soil hydrology, increasing the wetness
of reactive mineral surfaces, activating stagnant porewaters
that are immobile in drier soils, and decreasing soil solution
concentrations and pH (White and Blum, 1995). Higher
temperatures can also enhance the pedogenic weathering rate
because of the thermodynamic dependence of weathering
reactions (White et al., 1999). Therefore, enhanced pedo-
genesis across the MPB, as suggested by the Shilou Red Clay
mineral magnetic record (Fig. 6a–e), is likely indicative of a
climatic shift to more humid and/or warmer conditions.
A temperature increase on the CLP would be less likely

and is inconsistent with observations of Antarctic glaciation
and global cooling across the MPB (Zachos et al., 2001;
Rommerskirchen et al., 2011; LaRiviere et al., 2012; Zhang
et al., 2014). Within a context of Antarctic glaciation (Zachos
et al., 2001), TEX86 (tetraether index of 86 carbon atoms,
cf. Schouten et al. [2002]) temperature proxy data suggest
that sea surface temperature (SST) in the South China Sea
(Ocean Drilling Program (ODP) Site 1143) and the tropical
western Pacific Ocean (ODP Site 806) decreased by ~2°C
across the MPB (Zhang et al., 2014), while SST in the mid-
latitude South Atlantic Ocean (ODP Site 1085) decreased by

up to ~8°C (Rommerskirchen et al., 2011; Fig. 6h–j). In
addition to these SST drops, decreased bottom-water tem-
peratures have also been documented across the MPB in the
Pacific and Atlantic Oceans (LaRiviere et al., 2012). Fur-
thermore, a temperature decline is supported by increased
percentages of Pinus and Picea pollen in Red Clay succes-
sions across the MPB (Ma et al., 2005). These observations
indicate that the CLP was unlikely to have shifted to warmer
conditions across the MPB when global climate cooled,
although the possibility of regional and/or season-specific
East Asian continental warming cannot be entirely excluded
at present. Future independent Asian continental temperature
reconstructions are crucial to test these scenarios in more
detail. According to presently available evidence, we pri-
marily relate increased pedogenesis on the CLP across the
MPB to increased soil moisture availability, rather than to
temperature changes.
Increased moisture availability on the CLP from the late

Miocene to early Pliocene is consistent with other indications
of ASM intensification. Examples include decreased eolian
detrital fluxes on the CLP (Sun and An, 2002) and into the
North Pacific Ocean (Rea et al., 1998), globally increased
chemical weathering intensity (Filippelli, 1997), reorganiza-
tion of the western Himalayan river system (Clift and
Blusztajn, 2005), increased flux of clastic material to the
South China Sea (Clift et al., 2014), decreased hematite/
goethite ratios at ODP Site 1148 from the South China Sea
(Clift, 2006), a positive shift of soil carbonate δ13C from the
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Figure 5. (color online) First-order reversal curve (FORC) diagrams for selected samples from the Shilou-A red clay sequence (the same
samples as in Fig. 3 and 4). The FORC diagrams are scaled to their respective maximum contour density.
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Siwalik Basin, and positive shifts of hydrogen (δD) and
carbon (δ13C) isotope ratios of leaf wax C31 n-alkane
and increased abundance of the planktonic foraminifer
Globorotalia bulloides and the radiolarian Actinomma in the
Arabian Sea (Quade et al., 1989; Sanyal et al., 2004; Huang
et al., 2007), which are indicative of an intensified ASM. The
MPB also coincides with an increase in humidity over the
Mediterranean region (Eronen et al., 2009) and with
increased moisture availability in tropical America, as indi-
cated by a positive shift of black carbon δ13C in the north-
eastern equatorial Pacific Ocean (Kim et al., 2016). The
percentage of terrestrial mollusks on the CLP that prefer cold
or dry environments decreases across the MPB (Fig. 6f),
while the percentage of terrestrial mollusks that prefer
humid or warm environments increases (Fig. 6g), which is
interpreted to indicate increased ASM precipitation and/or
temperature across the MPB (Li et al., 2008, 2014). Based on
the aforementioned evidence, we infer that the mollusk
record is more likely indicative of increased precipitation.
Overall, the combined records suggest that the cooler early
Pliocene had higher ASM precipitation than the warmer late
Miocene (Fig. 6). This implies that increased precipitation
was not always coupled with increased temperature during
the late Miocene and Pliocene, in contrast to the relationship
that has been inferred for the Quaternary (Lu et al., 2013;
Yang et al., 2015). In addition, global cooling across the

MPB may have faciliated increased moisture availability on
the CLP by weakening soil water evaporation.

CONCLUSIONS

We provide a detailed new mineral magnetic record from the
Shilou Red Clay sequence on the eastern CLP. The magnetic
minerology of the sequence is dominated by pedogenic SP,
SD, and small PSD magnetite grains. Our new mineral
magnetic record suggests that both pedogenic formation of
SP grains and transformation of SP grains to SD and to small
PSD grains accelerated across the MPB. These are indicative
of enhanced pedogenesis, which is consistent with a marked
lithological color shift to redder strata across the MPB. We
relate the enhanced pedogenesis to increased ASM pre-
cipitation on the CLP across the MPB. Our study suggests a
notable climate shift toward more humid conditions on the
CLP across the MPB, within a context of global cooling, and
contributes to better understanding of late Miocene-early
Pliocene Asian continental climate variability.
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