Supplementary Information for "Pathways to 1.5 and 2 °C warming from observational and

geological constraints" by Goodwin et al (submitted to Nature Geoscience 13th October 2017)

Supplementary Figures:

Supplementary Fig. 1. Carbon fluxes and upper ocean heat uptake from observations, Earth system AR5 models and our observation-consistent ensemble of conceptual Earth system model simulations 9 (a) Compatible fossil fuel carbon emissions from observations and model re-analysis (black), the observation 10 consistent ensemble of conceptual Earth system model (WASP) simulations (blue: thick blue line median, 11 blue shading 95% range). The annual carbon fluxes into the (b) ocean and (c) terrestrial systems for 12 observations, the observation consistent ensemble and nine Earth system models from Supplementary 13 Table 1 (lines as legend on panel b). Carbon emission and flux observations in (a)-(c) from The Global 14 Carbon Budget and Khatiwala et al. (Ref. 60) are as collated in Ref. (24), with additional original data 15 therein also deriving from Refs. (58-59).

18

19 20 21 Supplementary Fig. 2. The radiative forcing for the observation-consistent ensemble over time and from observational estimates for 2011. The radiative forcing over time in the efficient Earth system model 22 23 is drawn from the RCP scenarios⁵, but where each component is modified by an uncertainty which is retained over time (Supplementary Table 2). Included here are the median (line) and 95% range (shaded 24 25 regions) for observation-consistent ensemble simulations over time and for the IPCC estimates for 2011 from Ref. 2.

28 Supplementary Figure 3: Prior and posterior distributions of efficacies in the standard

29 experiment for RCP8.5. (a) The distributions of the efficacy of heat uptake, ε_N , in the initial prior

 10^8 model simulations (black) and in the posterior distribution of the 3×10^4 observation-consistent simulations (blue) in the standard experiment. (b) The distributions of efficacy of aerosol radiative

32 forcing, ε_{aero} , in the initial prior 10⁸ model simulations (black) and in the posterior 3×10⁴

33 observation-consistent simulations (blue) in the standard experiment.

34
 35 Supplementary Fig. 4: Simulated historical constraints against future projected warming and

- 36 ΔT_{2xCO2} . Scatterplots from the observationally-consistent ensemble: for the projected warming for
- 37 year 2081 to 2100 versus (a) the surface temperature change ΔT from decade 1971-1980 to 2007-
- 38 2016 and (c) the global ocean heat content change (ZJ) from year 1971 to 2010; and the equilibrium
- 39 climate sensitivity, ΔT_{2xCO2} (°C) versus (b) the surface temperature change ΔT and (d) the global
- 40 ocean heat content change [as in (a) and (b)]. The values of the correlation coefficient between the
- 41 variables are included (Supplementary Table 8). Each point (grey dot) represents a single
- 42 simulation in the observation-consistent ensemble, while the red dashed lines are the best fit.

43 44 **Supplementary Tables**

AR5 Earth system models	Reference
CanESM2	Ref. 43 (Arora et al., 2011)
CESM1-BGC	Ref. 44 (Moore et al., 2013)
GFDL-ESM2G	Ref. 45 (Dunne et al., 2013)
GFDL-ESM2M	Ref. 45 (Dunne et al., 2013)
HadGEM2-CC	Ref. 46 (Martin et al., 2011)
HadGEM2-ES	Ref. 47 (Jones et al., 2011)
IPSL-CM5A-LR	Ref. 48 (Dufresne et al., 2013)
IPSL-CM5A-MR	Ref. 48 (Dufresne et al., 2013)
IPSL-CM5B-LR	Ref. 48 (Dufresne et al., 2013)
MIROC-ESM-CHEM	Ref. 49 (Watanabe et al., 2011)
MIROC-ESM	Ref. 49 (Watanabe et al., 2011)
MPI-ESM-LR	Ref. 50 (Giorgetta et al., 2013)
NorESM1-ME	Ref 51 (Tiiputra et al. 2013)

Supplementary Table 1: List of AR5 Earth system models used with references

Madalmanamatan	Standard innut distribution	Deferrence/eennet		
Model parameter	Standard input distribution	Reference/comment		
Radiative forcing parameters				
Radiative forcing coefficient from CO_2 ,	Normal distribution:	From AR5 estimate of the parameter (Ref. 2)		
a (wm)	μ =5.35 Wm , σ =0.27 Wm			
Radiative forcing from CH_4 , N_2O and $h_2 h_2 h_3 h_2 h_3 h_3 h_3 h_3 h_3 h_3 h_3 h_3 h_3 h_3$	Normal distribution:	10 approximate ARS estimate of radiative		
nalogens in year 2011 (wm).	μ = 1.01 Wm ⁻ , σ = 0.061 Wm ⁻	Forcing from non- CO_2 well Mixed		
Dedictive forcing from agents sutside the	Nome al distribution.	Te engressimete AB5 estimete ef redictive		
Kadiative forcing from agents outside the	Normal distribution. $v = 0.0 W m^{-2} = 0.01 W m^{-2}$	for approximate AKS estimate of radiative		
Kyoto Protocol, such as aerosols, in year $2011 (Wm^{-2}) AB = (-2011)$	μ = -0.9 wm , σ = 0.61 wm	Protocol in year 2011 from (Pof 2)		
$2011 \text{ (WIII)} \Delta R_{aero}(l=2011)$	Physical climate system param	riotocol în year 2011 fiolii (Ref. 2).		
Climata Sansitivity S	Conozoia ²³ distribution with	$(P_{\text{of}} 22)$		
$(K [Wm^{-2}]^{-1})$	log normal uncertainty (Fig. 3a	(Rel. 23)		
	black)			
Relative efficacy of ocean heat untake	Normal distribution:	To reflect mean and standard deviation of		
	$\mu = 1.25 \sigma = 0.27$	CMIP5 models analysed in Ref (36)		
Relative efficacy of aerosol radiative	μ -1.25, 0-0.27 Uniform: 0.33 to 3.0	Allows aerosol radiative forcing to have		
forcing c	011101111. 0.35 to 5.0	between one-third to three times the impact on		
lorenig, ε_{aero}		warming compared to an equal radiative		
		forcing from CO_2 . This encapsulates the		
		efficacy range from the single-model analysis		
		of Ref (27 see Supplementary Information		
		therein) and extends the range to allow for the		
		possibility of different values in different		
		models		
Ratio of warming between global surface	Uniform: 0.30 to 1.45	Range set to encompass all observationally		
air temperatures and global sea surface		consistent ensemble members [i e_wider		
temperatures at equilibrium r_1		ranges receive no additional ensemble		
temperatares at equinoritam, 71		members that are observationally consistent]		
Ratio of warming between global whole-	Uniform: 0.01 to 0.75	Range set to encompass all observationally		
ocean warming and global sea surface		consistent ensemble members (as above)		
warming at equilibrium. r_2				
Fraction of total Earth system heat	Uniform: 0.9 to 0.96	Centred on the estimate of 93% of total Earth		
uptake that enters the ocean. f_{heat}		system heat uptake by the ocean from Ref. 2		
	Carbon system parameters			
The sensitivity of global Net Primary	Uniform: -5 to $+1$ PgC yr ⁻¹ °C ⁻¹			
Production to temperature anomaly,				
$\partial \text{NPP}/\partial T$ (PgC yr ⁻¹ °C ⁻¹)				
The sensitivity of global soil carbon	Uniform: -2.0 to +1.0 yr $^{\circ}C^{-1}$	As per WASP experiments in Ref. 21		
residence time to global temperature				
anomaly, $\partial \tau_{soil} / \partial T$ (yr °C ⁻¹)				
The CO ₂ fertilisation coefficient	Uniform: 0 to 1	1		
The buffered carbon inventory of the air-	Uniform: 3100 to 3900 PgC	As per WASP experiments in Refs. 21 and 22		
sea system, I _B		_		
Ocean circulation e-folding timescales to equilibrate tracer concentrations				
surface mixed layer and the atmosphere	Uniform: 0.1 to 0.5 yr			
surface mixed layer and the upper ocean	Uniform: 5 to 40 yr			
surface mixed layer and the intermediate	Uniform: 15 to 60 yr			
ocean		As per WASP experiments in Refs. 21 and 22		
surface mixed layer and the deep ocean	Uniform: 75 to 500 yr			
surface mixed layer and the bottom	Uniform: 250 to 1500 yr			
ocean				
Supplementary Table 2. List of	model narameters varied	hetween the ensemble members of		

51 52 53 54 Supplementary Table 2: List of model parameters varied between the ensemble members of the efficient Earth system model to generate the initial 10⁸ simulations for the standard experiment. ^a WASP: the Warming, Acidification and Sea-level Projector efficient Earth system model.

Climate system observation	Observational consistency test	Reference/Comment	Observation consistent ensemble range (95% range)
Surface temperature anomaly, 1850-1900 to 2003-2012	0.72 to 0.85 °C	AR5 (Ref. 2) (90% confidence)	0.72 to 0.85 °C
Surface temperature anomaly, 1951-1960 to 2007-2016	0.54 to 0.78 °C	HadCRUT4, NASA GISTEMP and NCDC (Refs. 8-12) (See fig. 1) (Encompassing 95% confidence range for multiple records)	0.61 to 0.78 °C
Surface temperature anomaly, 1971-1980 to 2007-2016	0.56 to 0.69 °C	HadCRUT4, NASA GISTEMP and NCDC (Refs. 8-12) (See fig. 1) (Encompassing 95% confidence range for multiple records)	0.56 to 0.68 °C
Sea Surface Temperature anomaly, 1850-1900 to 2003-2012	0.56 to 0.68 °C	Mean of HadSST3 and ERSST records, with ±0.06 °C uncertainty to reflect 90% confidence range in global temperature anomaly. (Refs. 52,53)	0.56 to 0.68 °C
Heat content anomaly in upper 700m of the ocean, 1971 to 2010	98 to 170 ZJ	Based on records in Supplementary Table 4 (Refs. 13-18 and 54-57). (encompasses the 95% confidence bands for multiple records)	99 to 170 ZJ
Whole ocean heat content anomaly, 1971 to 2010	117 to 332 ZJ (1 ZJ=10 ²¹ J)	Based on records in Supplementary Table 4 (See Fig. 2, Refs. 13-18 and 54-57). (encompasses the 95% confidence bands for multiple records)	129 to 327 ZJ
Cumulative ocean anthropogenic carbon sink, 1750 to 2011	125 to 185 PgC	AR5 (Ref. 2) (90% confidence)	125 to 182 PgC
Cumulative residual- terrestrial anthropogenic carbon sink, 1750 to 2011	70 to 250 PgC	AR5 (Ref. 2) (90% confidence)	95 to 252 PgC
Residual-terrestrial anthropogenic carbon sink, 2000 to 2009	1.4 to 3.8 PgC yr ⁻¹	AR5 (Ref. 2) (90% confidence)	1.4 to 3.7 PgC yr ⁻¹

57

Supplementary Table 3: The observation consistency tests used to extract the observationally consistent ensemble from the initial 10⁸ efficient Earth system model simulations. First, 10⁸
 simulations of the conceptual Earth system model are generated with varied input parameters

61 (Supplementary Table 2). Each simulation is checked for observational consistency, and accepted 62 into the observation-consistent ensemble if it lies within the ranges of all observational constraints,

63 or if the sum fractional tolerance of errors outside the observational ranges is less than 0.1 ranges

64 (Methods).

65 66

67

Ocean heat content data set	Description	System &/or Analysis method	Observations used for analysis or data assimilation	Reference
NODC	NOAA Global ocean heat and salt content	Objective analysis	World Ocean Data (CTD, XBT, MBT, OSD, APB, DRB, MRB, PFL, UOR, GLD, Argo)	Ref. 13
EN4.1.1	Version 4 of the Met Office Hadley Centre EN series	Objective analysis	World Ocean Data + Arctic Synoptic Basin-wide Observations (ASBO)+ Global Temperature and Salinity Profile Project (GTSPP)	Ref. 16
MOSORA	Statistical reanalysis based on version 3 of the Met Office Hadley Centre EN series	Statistical ocean reanalysis (based on covariances from HadCM3 model)	World Ocean Data + ASBO +GTSPP +Argo from GDAC after 2000	Ref. 17 and Ref. 56
Cheng et al., (2017)		Ensemble optimal interpolation with a dynamic ensemble (based on CMIP5 historical simulations)	World Ocean Data	Ref. 18
Domingues et al., (2008)		Objective analysis	reversing thermometers+XBTs+CTDs+Argo	Ref. 54
Ishii and Kimoto (2009)		Objective analysis	World Ocean Data+GTSPP+XBTs from JMSDF	Ref. 55
ORAS4	ECMWF reanalysis	NEMO 1º +NEMOVAR	Up to year 2010: T/S from EN3 From year 2010: T/S from GTS (XBT: T corrections only) Along track SLA from AVISO	Ref. 15
SODA2.2.4	Reanalysis	POP 0.25° +SODA	World Ocean Data +SST from ICOADS 2.5	Ref. 14 and Ref. 57

Supplementary Table 4: Summary of the analysis and reanalysis products.^{*a*}

^aNote on abbreviations: National Oceanography Data Center (NODC), National Oceanic and Atmospheric Administration (NOAA), Met Office Statistical Ocean Reanalysis (MOSORA), Hadley Centre Coupled Model (HadCM), Ocean ReAnalysis System (ORAS), European Centre for Medium-Range Weather Forecasts (ECMWF), Nucleus for European Modelling of the Ocean (NEMO), Simple Ocean Data Assimilation (SODA), Parallel Ocean Program (POP), World Ocean Database (WOD), Conductivity Temperature and Depth data (CTD), eXpendable BathyThermograph data (XBT), Mechanical BathyThermograph data (MBT), Ocean Station Data (OSD), Autonomous Pinniped Bathythermograph data (APB), Drifting Buoy data (DRB), MooRed Buoy data (MRB), Profiling Float data (PFL), Undulating Oceanographic Recorder data (UOR), Glider Data (GLD), Arctic Synoptic Basin-wide Oceanography project (ASBO), Global Temperature and Salinity Profile Programme (GTSPP), Global Data Assembly Centre (GDAC), Japan Maritime Self-Defence Force (JMSDF), Global Telecommunication System (GTS), Sea Level Anomaly (SLA), International Comprehensive Ocean-Atmosphere Data Set (ICOADS).

8	8
8	9

Experiment	Description	Model parameters
number		
1	RCP8.5 standard experiment	Input distributions as Supplementary Table 2
2	RCP6.0 standard experiment	Input distributions as Supplementary Table 2
3	RCP4.5 standard experiment	Input distributions as Supplementary Table 2
4	RCP2.6 standard experiment	Input distributions as Supplementary Table 2
5	RCP8.5 uniform ε_N	Input distributions as Supplementary Table 2,
		except that ε_N has a uniform input distribution
		between 0.82 and 1.83, the range of ε_N values
		found in CMIP5 models by Ref. (36)
6	RCP8.5 fixed $\varepsilon_N = 1.0$	Input distributions as Supplementary Table 2,
		except that $\varepsilon_N = 1.0$ in every simulation.
7	RCP8.5 fixed $\varepsilon_{aero} = 1.0$	Input distributions as Supplementary Table 2,
		except that $\varepsilon_{aero} = 1.0$ in every simulation and
		the initial number of simulations is reduced ^{a} to
		4×10 ⁷ .
8	RCP8.5 alternate S	Input distributions as Supplementary Table 2,
		except S is taken from an alternative
		distribution from geological evidence from
		Ref. 23 with normal uncertainty (Fig.3, black
0	DCD9 5 agreement in agreed	dotted lines).
9	\mathbf{R}	input distributions as Supplementary Table 2,
	Radiative Forcing uncertainty	agonts in 2011 has an asymmetric distribution
		with neak value $_0.0 \text{ Wm}^{-2}$
10	RCP8 5 with no imposed	Input distributions as Supplementary Table 2
10	stochastic temperature	The values of $AR(2)$ noise coefficients c_1 c_2
	variability	and c_3 are all set to zero (eq. 2)
	·	

91 Supplementary Table 5: Description of the standard and perturbation experiments.

^{*a*} With $\varepsilon_{aero}=1$ in all simulations there are 3×10^4 observation-consistent simulations generated when the initial ensemble size is reduced to 4×10^7 , instead of 1×10^8 for the other experiments. This is because the value $\varepsilon_{aero} = 1$ is most likely to generate an observation-consistent simulation. ^b Asymmetry in the radiative forcing uncertainty distribution is introduced in the following way. First, a value is randomly drawn from the same normal distribution as the standard experiment, μ = -0.9 Wm⁻², σ = 0.61 Wm⁻². If the value is less (so more negative) than the normal-peak (-0.9 Wm⁻²), then its distance from the normal-peak value is doubled. If the value is greater than the normal-peak (-0.9 Wm⁻²), then it its distance from the normal peak value is halved. This results in a prior distribution that is asymmetrical with a long tail of negative values.

Experiment	Maximum emissions for warming ≤ 1.5 °C in 66 % of simulations	Maximum emissions for warming ≤ 1.5 °C in 50 % simulations (5 to 95 %)	Maximum emissions for warming ≤ 2.0 °C in 66 % of simulations	Maximum emissions for warming ≤ 2.0 °C in 50 % of simulations (5 to 95 %)
1. RCP8.5 standard experiment	200 PgC	220 (145 to 315) PgC	405 PgC	435 (320 to 580) PgC
2. RCP2.6 standard experiment	200 PgC	235 (130 to -) PgC	-	_
3. RCP4.5 standard experiment	195 PgC	215 (135 to 325) PgC	415 PgC	455 (305 to 680) PgC
4. RCP6.0 standard experiment	205 PgC	230 (140 to 350) PgC	455 PgC	500 (340 to 685) PgC
5. RCP8.5 uniform ε_N	200 PgC	220 (145 to 325)	405 PgC	440 (325 to 585)
6. RCP8.5 fixed $\varepsilon_N = 1.0$	195 PgC	215 (150 to 295) PgC	400 PgC	430 (330 to 555) PgC
7. RCP8.5 fixed $\varepsilon_{aero} = 1.0$	195 PgC	215 (145 to 310) PgC	395 PgC	425 (315 to 570) PgC
8. RCP8.5 alternate S	200 PgC	225 (145 to 315) PgC	405 PgC	435 (320 to 580) PgC
9. RCP8.5 asymmetry in aerosol Radiative Forcing uncertainty	200 PgC	220 (145 to 315) PgC	400 PgC	435 (325 to 580) PgC
10. RCP8.5 with no imposed stochastic temperature variability	205 PgC	220 (165 to 265) PgC	405 PgC	430 (335 to 535) PgC

110 Supplementary Table 6: Cumulative emissions from year 2017 when the 1.5 and 2.0 °C

warming targets are exceeded for the 10 standard and perturbation modelling experiments
(Supplementary Table 5).

1	1	4
•		

Experiment	Posterior climate sensitivity,	Posterior Equilibrium
	S (95% range)	Climate Sensitivity,
		ΔT_{2xCO2} (95% range)
1. RCP8.5 standard experiment	0.54 to 1.11 K [Wm ⁻²] ⁻¹	2.0 to 4.1 °C
2. RCP2.6 standard experiment	$0.54 \text{ to } 1.13 \text{ K } [\text{Wm}^{-2}]^{-1}$	2.0 to 4.1 °C
3. RCP4.5 standard experiment	0.55 to 1.12 K [Wm ⁻²] ⁻¹	2.0 to 4.1 °C
4. RCP6.0 standard experiment	0.56 to 1.13 K [Wm ⁻²] ⁻¹	2.1 to 4.2 °C
5. RCP8.5 uniform ε_N	0.54 to 1.13 K [Wm ⁻²] ⁻¹	2.0 to 4.1 °C
6. RCP8.5 fixed $\varepsilon_N = 1.0$	$0.53 \text{ to } 0.95 \text{ K } [\text{Wm}^{-2}]^{-1}$	2.0 to 3.4 °C
7. RCP8.5 fixed $\varepsilon_{aero} = 1.0$	$0.55 \text{ to } 1.16 \text{ K } [\text{Wm}^{-2}]^{-1}$	2.0 to 4.3 °C
8. RCP8.5 alternate S	0.54 to 1.12 K [Wm ⁻²] ⁻¹	2.0 to 4.1 °C
9. RCP8.5 asymmetry in aerosol	$0.54 \text{ to } 1.09 \text{ K } [\text{Wm}^{-2}]^{-1}$	2.0 to 4.0 °C
Radiative Forcing uncertainty		
10. RCP8.5 with no imposed	$0.56 \text{ to } 1.11 \text{ K } [\text{Wm}^{-2}]^{-1}$	2.1 to 4.1 °C
stochastic temperature		
variability		

Supplementary Table 7: Climate sensitivity posterior ranges for the 10 standard and perturbation modelling experiments (Supplementary Table 5).

	Equilibrium Climate Sensitivity	Anthropogenic warming in 2081-2100
Surface temperature anomaly, 1850-1900 to 2003-2012	$R^2 = 0.00$	$R^2 = 0.01$
Surface temperature anomaly, 1951-1960 to 2007-2016	$R^2 = 0.01$	$R^2 = 0.00$
Surface temperature anomaly, 1971-1980 to 2007-2016	$R^2 = 0.08$	$R^2 = 0.20$
Sea Surface Temperature anomaly, 1850-1900 to 2003-2012	$R^2 = 0.00$	$R^2 = 0.00$
Heat content anomaly in upper 700m of the ocean, 1971 to 2010	$R^2 = 0.25$	$R^2 = 0.13$
Whole ocean heat content anomaly, 1971 to 2010	$R^2 = 0.34$	$R^2 = 0.13$
Cumulative ocean anthropogenic carbon sink, 1750 to 2011	$R^2 = 0.00$	$R^2 = 0.00$
Cumulative residual- terrestrial anthropogenic carbon sink, 1750 to 2011	$R^2 = 0.00$	$R^2 = 0.00$
Residual-terrestrial anthropogenic carbon sink, 2000 to 2009	$R^2 = 0.00$	$R^2 = 0.00$
Radiative forcing from aerosols (and other non- Kyoto agents) in 2011	$R^2 = 0.01$	$R^2 = 0.02$

122

123 Supplementary Table 8: Correlations between the simulated historical properties and future

124 projections for a mid-mitigation scenario (RCP4.5). Correlation coefficients between the

125 Equilibrium Climate Sensitivity and future warming projections with the simulated historical

126 properties in the 3×10^4 observation-consistent simulations.