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The last deglacial was an interval of rapid climate and sea-level change, including the collapse of large
continental ice sheets. This database collates carefully assessed sea-level data from peer-reviewed sources
for the interval 0 to 25 thousand years ago (ka), from the Last Glacial Maximum to the present interglacial.
In addition to facilitating site-specific reconstructions of past sea levels, the database provides a suite of
data beyond the range of modern/instrumental variability that may help hone future sea-level projections.
The database is global in scope, internally consistent, and contains U-series and radiocarbon dated
indicators from both biological and geomorpohological archives. We focus on far-field data (i.e., away from
the sites of the former continental ice sheets), but some key intermediate (i.e., from the Caribbean) data
are also included. All primary fields (i.e., sample location, elevation, age and context) possess quantified
uncertainties, which—in conjunction with available metadata—allows the reconstructed sea levels to be
interpreted within both their uncertainties and geological context.
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Background and Summary
Curated and complete archiving (i.e., with full observational and geochemical metadata) of indicators of
former sea levels from multiple archives (e.g., corals, salt marshes, shorelines) is essential not only to
address questions related to past changes in sea level, but also to couch current and future changes within
a wider geological context. There is no single repository used by the community to archive information,
and data are often drawn from disparate publications and repositories, with different data quality
standards for each sub-discipline. Here we bring together published sea-level data from a wide range of
sub-disciplines that encompass both biological and geomorphological archives.

Consistent treatment of each of the individual records in the database, and incorporation of fully
expressed uncertainties, allows datasets to be easily compared. We focus on the transition from the last
glacial to the current interglacial period, which is relevant to our understanding of future extreme sea-
level change because it provides a suite of data beyond the range of modern/instrumental variability with
which to robustly test simulations1–4. Notably, the interval incorporates the last deglaciation, the most
recent period of widespread destabilisation and collapse of major continental ice sheets. In model-based
projections of future sea-level change5, the contribution of polar ice-sheet collapse is associated with large
uncertainties, for example, regarding the rates and mechanisms of response to climate forcing. Past sea-
level records provide some constraint on the natural bounds to the rates and magnitudes of polar ice-
sheet decay6–8. Our overarching goal therefore is to establish an open-source, community-led archive that
will accelerate research on the rates and magnitude of past sea-level change through the interval of time
for which the most detailed information exists.

Spatially, the database is global in scale, with a focus on far-field sites (Fig. 1). We concentrate on far-
field sites, because other compilations are available for near-field sites, mainly based on salt marsh
samples9–11. We currently include microatoll data only where we are able to relate the elevation to a tidal
datum, as we lack sufficient expertise to fully assess the physical and ecological relationship of this
indicator to sea level. Temporally, the database concentrates on the interval 0 to 25 ka. At present, the
database incorporates both U-series and radiocarbon dated samples. The database will be continually
maintained and updated.

The compilation contains 194 studies (Table 1 (available online only)) from 40 locations (~2,600 data
points) and includes all raw information and metadata, in contrast to other compilations where only
a finalised age and relative sea level is given. This dataset complements and enhances the dataset of
Hibbert et al.12, adding different types of sea-level indicators (e.g., mangroves, bivalves and gastropods)
and incorporating both radiocarbon and U-series dating methods. The present compilation contains
~2,600 sea-level markers for the past 25 ka, compared to 630 in Hibbert et al.12.

Four broad types of information are required to reconstruct former relative sea levels13–15: (1) location
(including tectonic setting); (2) sample elevation and uncertainty; (3) sample age and uncertainty; (4)
sample information and context, which includes how the sample relates to sea level at the time of
formation. The inclusion of all available data (i.e., published, with some clarification from authors, where
necessary) and associated uncertainties in these four categories, for each dataset in the compilation, places
the sea-level indicators within a well-defined wider environmental context. This aids interpretation and
ensures the continued utility and value of each contributing dataset. In addition, as all available ‘raw’ age
data are included for both U-series and radiocarbon dated samples (e.g., activity ratios, spike calibration,
decay constants, corrections applied), users are able to recalculate ages for the samples, if desired, which
ensures continued utility of the data into the future.

No correction has been made for glacio-isostatic (GIA) processes. Instead, we present relative sea level
records with extensive documentation, and refrain from making any interpretations. However, when the
database is applied, GIA considerations and corrections will become necessary.

Figure 1. Location and age of fossil samples within the database. (a) Location of fossil samples: U-series
dates (this study, red, open squares; Hibbert et al.12, green crosses); marine radiocarbon (blue, filled circles) and
terrestrial radiocarbon samples (orange, open circles). (b) Age frequency of fossil samples: all samples in the
database (Data Citation 1, grey); U-series (red); and radiocarbon dated (marine, blue; terrestrial, orange).
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Methods
All data have been obtained from peer-reviewed papers and books. Authors were contacted where
information was missing or clarification was needed. Samples that still fail to reach a complete set of
database fields have been excluded from our relative sea-level reconstructions. However, such samples are
retained in the database because they may be important for other analyses. Figure 2 summarises the
treatment of datasets within the database, and a brief outline of data acquisition and processing is
given below.

Location
Each data point in the database has been assigned a unique identifier, along with the original sample or
analysis identifier. Sample locations are as originally reported. Where this information was lacking or
insufficiently detailed, the latitude and longitude were estimated.

Tectonic setting
The tectonic setting of a sample affects the reconstructed sea level through the interaction of uplift or
subsidence with the measured elevation. Ideally, uplift/subsidence rates should be independently
constrained. However, only Tahiti16,17 and Mururoa Atoll18 have such independent constraints. For most
sites, the rates are often determined using the maximum elevation of the fossil coral terrace
corresponding to the Last Interglacial, and an assumed age and relative sea-level position for the Last
Interglacial. Occasionally, independent data (e.g., radiometrically dated lava flows) constrain the uplift/
subsidence rate and we use these constraints where available (Mururoa Atoll19; Tahiti17,20,21). Where no
independent constraints are available, we have recalculated the uplift rates from the elevation of the
maximum Last Interglacial terrace and an assumed Last Interglacial age and sea level (Table 2 (available
online only), as per Hibbert et al.12).

Figure 2. Simplified schema of the deglacial sea level database giving an overview of data acquisition and
processing. The numbered boxes are the four essential components needed to reconstruct former sea levels: (1)
location; (2) elevation; (3) age and; (4) sample information and other contextual information (including how
the sample dated relates to sea level at the time of formation). Within each of these boxes we list the primary
information recorded. Grey boxes indicate additional processing of data from original publications and new
outputs (also included in the database, Data Citation 1).
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Sample elevation and uncertainty
The elevation uncertainty of a sample falls into two broad categories: (i) the measurement uncertainty
related to the method used for establishing the elevation of the outcrop or core and (ii) sampling
uncertainties associated with both the method of sample acquisition (e.g., core stretching or shortening
errors), which is dependent upon the method, and uncertainties that arise from sampling a core or
section. Where information is missing in the original publication, we allocate a method-appropriate
uncertainty. For example, where there is no mention of how the elevation was obtained or where only the
method is given (e.g., levelling), we allocate a± 0.5 m and± 0.03 m (cf. ref. 22) uncertainty (2σ),

Method Max. quoted
uncertainty
(m,± 2σ)

Min. quoted
uncertainty
(m,± 2σ)

Allocated uncertainty (m,± 2σ) derivation

1. Elevation determination:

Auto-level not reported not reported 0.03 cf. levelling uncertainty (Törnqvist et al.22; Hijma et al.296)

clinometer and analog depth
recording

not reported not reported half modern tidal range n/a

digital depth gauge/ dive computer not reported not reported 0.5 Rovere et al.297; Azzopardi and Sayer298

interpolation between contours on
drainage plans

variable variable dependent on contour spacing n/a

interpolation from topographic
maps; no contour spacing given

variable variable 0.5 n/a

levelling 1.5 0.01 0.03 Törnqvist et al.22; Hijma et al.296

levelling (laser) 0.15 0.15 0.03 Törnqvist et al.22; Hijma et al.296

ship—echosounder/not reported not reported not reported half modern tidal range n/a

‘spirit level and folding ruler’ not reported not reported 0.5 n/a

survey, not reported n/a n/a 0.5 n/a

theodolite not reported not reported 0.03 cf. levelling uncertainty (Törnqvist et al.22; Hijma et al.296)

unknown or not reported n/a n/a 0.5 n/a

2. Coring method:

Auger or hand auger not reported not reported 0.05 cf. hand coring (Hijma et al.296; Woodroffe299)

horizontal push core not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

hydraulic drill or piston core not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

piston corer, Livingstone, split
spoon or unspecified

not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

Russian corer not reported not reported 0.01 Woodroffe299

star picket driver not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

single tube sampler not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

percussion drilling not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

rotary drill not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

SCARID drilling system Not reported not reported 0.1 Dennis Hubbard (pers. comm)

barge mounted drilling rig not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

virbracore not reported not reported 0.15 Hijma et al.296; Morton and White300

gravity corer not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

‘rigging’—unknown not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White1997300)

drilling, unspecified not reported not reported 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

not reported 0.5 0.03 0.15 cf. vibracoring and rotary drilling (Hijma et al.296; Morton and White300)

not reported, assumed hand coring not reported not reported 0.05 Hijma et al.296; Woodroffe299

not reported, assumed vibracoring not reported not reported 0.15 Brown154; Robbin259

3. Sampling:

author specified 0.001 2 n/a n/a

cores 0.001 2 0.01 Shennan14

exposure/outcrop 0.01 0.01 0.01 n/a

unknown/not reported setting 0.25 0.25 0.01 n/a

Table 3. Allocated elevation-, sample extraction- and sampling uncertainties (where these are missing
from the original publication.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180088 | DOI: 10.1038/sdata.2018.88 4



Figure 3. Coral depth distributions. Median (grey, filled diamond) and 95% confidence intervals (grey
horizontal bars) for the ecologically derived depth distributions. The ICUN89 global estimates of maximum
depth (dark red, filled circles) and those derived for Acropora sp.90 (red, open circles) are given for comparison.
Also plotted are the maximum depths for certain recorded at various locations: Jamaica75 (orange, filled
squares); the Caribbean92 (orange, open diamonds); The Red Sea97 (yellow, filled triangles); the Coral Sea94 and
Gulf of Thailand93 (yellow, filled circles); Reunion Island91 (green, filled diamonds); the Indo-Pacific96 (blue,
open squares); Johnston Atoll92 (dark blue, open diamonds); Moorea, French Polynesia92 (dark blue, filled
squares) and; the Great Barrier Reef95 (blue, filled circles).
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respectively. Table 3 details the allocated uncertainties used in the database. The elevation uncertainty
therefore is the root mean square of: (i) uncertainty associated with the method of establishing the
elevation (e.g., levelling); (ii) uncertainties accounting for any distortion in obtaining the record (i.e.,
those resulting from coring methods) and; (iii) sampling uncertainties.

In order to compare elevations, a common datum is required. Within the database, we note the datum
to which all measurements relate and, where possible, we reference all elevations to mean sea level (MSL)
using appropriate tidal parameters (e.g., when converting elevations referenced to mean low water springs
(MLWS) to MSL). We do not include any tidal errors; the modern tidal range often is not reported and
variations in the past are poorly constrained.

Sample age and uncertainty
The database incorporates samples dated using U-series and radiocarbon methods. Detailed descriptions
of the systematics of both these techniques are available elsewhere (e.g., for U-series dating23–25; for
radiocarbon dating26–28). A brief summary of data type and processing is given in the following.

U-series analyses. We record the instrument, method of spike calibration, decay constants, activity
ratios, and detrital thorium correction used in the original age determination (also included). For samples
where the spike was calibrated gravimetrically, we recalculate the activity ratios using the most recent
decay constants29. For all samples, we then iteratively recalculate ages (equation 1) and δ234Uintial
(equation 2) assuming a closed system and using the most recent decay constants29 (calculations were
made using Isoplot v. 3.5 ref. 30). The reported uncertainties include the error associated with the decay
constants.
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where, [230Th/238U]act is the
230Th/238U activity ratio; λ238, λ234, λ230 are the decay constants of 238U, 234U

and 230Th respectively29,31; δ234U(meas) is the measured value of the activity ratio of 234U/238U relative to
secular equilibrium in per mille (δ234U= ([234U/238U] – 1) x 1000); and T is the age of the sample
in years.

We make no attempt to account for any open-system behaviour (i.e., the remobilisation of nuclides)
within the U-series dated datasets because the identification and correction of open system behaviour
continues to be complex and debated (e.g., ref. 24). In addition, we do not screen the recalculated ages for
reliability; there are multiple approaches to assess age reliability and the inclusion of all metadata and the
original reported ratios etc., allows users to determine appropriate age-reliability screening criteria (e.g.,
the bounds of acceptable δ234Uinitial values, % calcite etc.).

Ages are reported as ka BP in order to ensure that they are comparable to the radiocarbon ages, which
are by convention reported as years before 1950 AD. We adjust the age for the time elapsed since analysis.
Where no date of analysis is given, we have assumed this was the year of publication. We recognise that
this may introduce additional age uncertainty but anticipate that this only a few years and typically less
than a decade.

Radiocarbon analyses. We record the laboratory, instrument, publication code, any corrections
applied by the laboratory (i.e., background and δ13C corrections) and both the conventional and
calibrated ages and associated uncertainties for each sample (including any regional marine reservoir age
correction, ΔR, applied by the authors). We also report the δ13C values for samples, and the calibration
dataset and programme where provided. Where no background and/or δ13C correction was applied by
the laboratory, we apply a sample-specific normalisation (terrestrially derived organic material
δ13C=− 25± 2 ‰; marine carbonates δ13C= 0± 2 ‰). The conventional age can then be calculated
using the appropriate (instrument dependent) 14C/12C or 14C/13C equations32. Age uncertainty is
reported at the 1σ level in accordance with standard radiocarbon reporting protocols33–35.

We assume that sample materials obtained their carbon from only one reservoir (i.e., atmospheric or
marine). Additionally, we assume that estuarine bivalve and mollusc samples are fully marine because
additional information, such as δ18O and δ13C analyses, that would help establish the environment in
which the sample was living is often not available. We recognise that there may be considerable variation
in the regional marine reservoir correction (ΔR) for estuarine bivalve and mollusc samples due to the
varying mixing of marine and freshwater36–39 which potentially results in an older apparent age for
specimens living in estuarine environments.

A radiocarbon measurement requires an additional step of calibration to obtain an age estimate due to
the non-linear nature of the 14C timescale40. Both the calibration procedure itself (given the complexity of
the calibration dataset) and the choice of software and parameters (such as the use of Bayesian statistics
to construct age-depth models)41,42 influence the final calibrated age of a sample.

The calibration curve may affect the statistical inference of time because the relationship between the
radiocarbon age and the calendar age changes through time, due to variations in the radiocarbon
concentration (e.g., refs 43,44). In addition, the shape of the calibration curve (non-monotonic with
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inversions) means that calibration is non-commutative and directional45, with distortions due to the
structure of the curve itself43, the potential for the production of artificial peaks46, and the amplification
of the output probability density function by steep sections of the calibration curve45,47. This can result in
the summed probability density function of a calibrated date exceeding the ‘true’ time interval of the
event48.

Different calibration algorithms may affect the final calibrated age probability distribution, particularly
when comparing results from software packages that do, or do not apply Bayesian statistics, i.e., where the
age-depth model uses different depositional models to mimic sediment deposition processes. For
example, OxCal49, BChron50, and Bacon51 utilise Bayesian statistics to incorporate stratigraphic and other
chronological information to formulate prior distributions for the calibrated dates, and to provide ‘best-
estimate’ age-depth models with uncertainties. In the database, we have chosen not to implement such
age-depth modelling routines for datasets with stratigraphic ordering when recalibrating the radiocarbon
dates, for several reasons: (1) to ensure consistency within the database; (2) because not all samples in the
database have simple stratigraphic relationships, for example, coral reefs are complex 3-dimensional
structures that do not necessarily accumulate monotonically like sediment cores, and; (3) to refrain from
imposing any structure on future analysis. Overviews and comparisons of the main age-depth modelling
routines are available41,42, should users wish to apply these on appropriate, individual subsets of
the database. Samples with stratigraphic ordering are clearly identified in the database with a numeric
identifier for each group, and ordering given by subdivision of that number, smallest/topmost to largest/
lower-most sample.

The conventional radiocarbon age and uncertainty for each sample were recalibrated using OxCal
version 4.3. (ref. 52) and the latest calibration datasets: IntCal13 (ref. 53) for northern hemisphere
terrestrial samples; SHCal13 (ref. 54) for southern hemisphere terrestrial samples; and Marine1353 for all
marine samples. For marine samples, we apply a local marine reservoir correction (ΔR55) to account for
regional variations in the offset between the marine and terrestrial carbon reservoirs (the marine reservoir
effect). The marine reservoir effect (i.e., the offset in the radiocarbon age of marine materials compared to
materials deriving their 14C from the atmospheric at the same time) is spatially and temporally variable.
The spatial variation from a calculated global average is accounted for by using a regional offset (ΔR). A
consistent value of ΔR was applied for each coherent geographical region (i.e., for all sites influenced by
the same surface oceanographic circulation) and estimated from the online database56, double checked
with previous ΔR determinations (Table 4 (available online only)). The online database56 of values (and
calculations of ΔR57) is used to ensure both the correct and consistent calculation of ΔR. Note that the
method used to calculate ΔR in the online database incorporates the full probability distribution unlike
‘classical’ intercept methods, so that the resulting ΔR uncertainties are more accurate (full discussion of
the methodology57). Where more than one ΔR value is used, we calculated an error weighted mean and
uncertainty. We apply the pre-industrial calculated ΔR, but recognise that ΔR is also temporally
variable58–60. Applying a pre-industrial ΔR does not account for any variations through time as a result of
changing climatic and surface-ocean conditions, or variations in the production of 14C in the atmosphere
with variations in the Earth’s magnetic field e.g., ref. 61. In general, there are few locations in the database
and a limited number of studies where the temporal variability in ΔR has been investigated. As this
variability is largely unconstrained at present, we do not attempt to account for this uncertainty in the
database but the effect would be most pronounced for sites with data spanning the transition from the
glacial to interglacial, when reorganisations of ocean circulation and of carbon stores within the ocean
may have led to potentially large variations in ΔR. It should be noted that any such age uncertainty may
additionally affect the resulting PRSL reconstruction of some sites through interaction with uplift or
subsidence rates.

The output of a calibrated radiocarbon date is a probability density function. The calculated posterior
probability distributions are often multimodal and difficult to summarise, except via graphical
representations41. Reporting of the 68 and 95% confidence interval has become common, although not
universal, in part due to the ease of plotting a point estimate. Point estimates (such as the mean, mode,
median etc.) do not fully account for the variation in the output of calibration (i.e., the resulting
multimodal distributions), and none of these point-based estimates can be considered a good estimate of
the full complexity of the calibrated date44,62. It is difficult within a database to accurately record the
outcome of calibration. However, because all information required for calibration of a date is included in
the database (inter alia: conventional radiocarbon date and uncertainty; material dated; ΔR for marine
samples; calibration curve, programme and version), users can recalibrate the data and obtain the same
probability density function as captured by the 68 and 95% confidence intervals listed in the database.
The complete documentation also allows recalibration of the dates following future refinements of the
calibration datasets, etc.

In our recalculation (where appropriate) and recalibration of radiocarbon samples, we take care to
ensure that we round the calibrated age (to nearest whole number) only at the end of the process.
However, we are unable to guarantee that is the case of the reported values used in each of the
processing steps.
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a

b

Figure 4. Modern observations of Porites sp. used to constrain depth distributions. (a) Map of fossil (red,
open circles) and modern Porites sp. observations (plotted only those observations used to derived the depth
distributions) (grey, filled circles). (b) Global (grey), basin and sub-basin (pink) depth distributions for Porites
sp. represented as relative probability (normalised histograms, left panels) and cumulative frequency
distributions (right panels): (i) ‘Global’ (grey) and Pacific (blue); (ii) ‘Global’ (grey) and Great Barrier Reef
(orange); (iii) ‘Global’ (grey) and Caribbean (green); (iv) Caribbean (green) and Belize (orange).
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Sample information and context
Detailed information on both the sample and its geological context is vital. We record available
information from the publications including: what material was dated (and species, if given); the facies
context and/or other outcrop and unit information; whether the authors determined the sample to be in
growth position and/or in situ; and the growth form (e.g., branching or massive corals, if given).

In addition, to reconstruct past sea levels, we must establish the relationship between the sample and
sea level at the time of its formation (i.e., the ‘indicative meaning’ which describes the range of elevations,
with respect to a specified tidal datum, that a particular indicator forms13,14,63). This is often achieved
using a modern analogue, i.e., looking at the modern elevation range of a sea-level indicator in relation to
present sea level (or some tidal datum). This approach is subject to key assumptions: (i) that the modern
depth distribution is the most appropriate analogue; (ii) that the relationship is stable through time and;
(iii) that the fossil record is a faithful approximation of the living diversity and distribution (i.e., minimal
loss of detail due to taphonomic processes).

We use two different approaches for representing these relationships. The first uses a specific
probability distribution for each taxon (e.g., the modern depth distribution of a coral species; following
the methodology of Hibbert et al.12), and the second assumes a uniform probability distribution because
the sea-level indicator forms somewhere within an altitudinal range but we have no further information
as to the most likely depth or elevation (e.g., an oyster living somewhere within the intertidal to low-
supratidal range at a given site).

Using a specific probability distribution of a species. For coral sea-level indicators, we are able to
define a probability distribution for the depth-habitat (using the methodology detailed in Hibbert et al.12

and summarised here). In this iteration of our analysis, we update the datasets used to define each taxon-
specific depth distribution using the latest release from the Ocean Biogeographical Information System
(www.iobis.org). The data in the OBIS dataset have been rigorously quality controlled. We use only
observational and live-collected data with a vertical precision of ≤0.25 m. In some instances, there are
insufficient observations (o150) to constrain the depth distributions and so the depth precision criterion
was relaxed: Alveopora sp. has a depth precision of ≤0.5 m (n= 171); Favia fragum and Porites solida
have a depth precision of ≤ 2 m (n= 183 and 149 respectively) and; Acropora abrontanoides has a depth
precision of ≤ 5 m (n= 132). For some fossil species used to reconstruct past sea levels (Goniopora
lobata and Gardinerosis planulata), little or no modern observational data were available and, in these
instances, we use the modern genus depth distributions. We urge caution where fewer than 150
observations constrain the depth distributions.

For each taxon, we derive an estimate of the median water depth in which the modern species lives
(Fig. 3). We have chosen the median rather than the mean because the depth distributions are not
Gaussian or symmetrical and because the mean is more sensitive to outliers. The lower and upper bounds
of the 95 and 68% confidence intervals were also determined using the 2.5, 97.5, 16 and 84 percentiles,
respectively (Table 5 (available online only); all depth observations used can be found in Data Citation 2
so that users may ‘draw’ directly from the distribution, if desired). We compile depth distributions at a
‘global’ scale (i.e., using all information available for the species) as well as geographical subsets: ocean
basin, sub-basin and, where sufficient information is available, regional subsets (for example, Atlantic,
Caribbean, Belize or Pacific, SW Pacific, Great Barrier Reef). These regional distributions are included as
a first-order approximation of the modern variability (both geographically and with depth) of coral taxon
distribution64,65. Our ecological depth distributions are especially useful for sites lacking site-specific
assemblage work that would constrain the modern relationship between coral depth and sea level.

In general, there are very few observations in the Indian Ocean and so it was not possible to further
constrain the depth distributions for this region.

In the Pacific, there are significant numbers of observations but once sub-divided into sub-basin and
regional locations, only the Great Barrier Reef (GBR) has sufficient, systematic observations (i.e., regular
recording of data to depths of ~ 10 m and greater) to allow determination of robust regional depth
distributions. For the most of the Pacific region, despite large numbers of observations, there appears to
be a shallow-water bias, with observations concentrated within the upper couple of meters (for example
using Porites sp., Fig. 4). Additionally, there are too few observations to allow determination of regional
depth distributions with any confidence, particularly for the east and southeast of the basin. The depth
distributions determined for the GBR region are based on numerous observations and span a greater
depth range than other Pacific observations. However, collating observations from such a large
geographical area likely masks the modern complexity of coral distribution within the reef system
e.g., refs 66–68. Nonetheless it represents a first step in refining sea-level reconstructions, by
incorporating a first-order approximation of the geographic variation in coral diversity and distribution.
It should be noted that at present there are relatively few fossil corals in the database from the Great
Barrier Reef (GBR) itself (n= 27 but, of these, 15 have been determined only to the genus level). The
similarity between reef ecology, distributions and growth forms between Vanuatu and the GBR69 also
allows us to use the GBR depth distributions to refine sea-level reconstructions for Vanuatu. This is
especially useful given that most (~70%) fossil corals from Vanuatu do not have original water depth
determinations from modern biozonation of corals, coralline algae etc.
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In the Atlantic, there is a substantial number of observations, including for the Caribbean sub-basin
and for many regional sites. This allows definition of several taxon-specific, regional depth distributions.
Most of these regional depth distributions are constrained by at least 100 observations, with most regions
having > 300 observations (see summary statistics in Table 6 (available online only)). For many regions
within the Caribbean sub-basin, there are distinct differences in species depth preference (e.g., Acropora
palmata, Fig. 5), with notable offsets to deeper or shallower habitats evident relative to the ‘global’ depth
distributions. This likely represents spatial variations in the depth habitat of the species (given the site-
specific factors governing coral distributions and diversity; see review of Hibbert et al.12) but may also
be an artefact of sampling bias (i.e., shallow-water bias in sampling). For some Caribbean fossil samples
(e.g., those from St Croix in the US Virgin Islands, Belize, and Panama), modern constraints on
the relationship between (tectonically corrected) coral elevation and sea level at the time of formation
(i.e., a palaeo-water depth relationship) are lacking. As such, the regional depth distributions generated
here allow us to both reconstruct sea level, and to incorporate the modern complexity in the geographic
variation in taxon depth preference. Without this information on the relationship between the sample
and sea level at the time of its formation, only a (tectonically) corrected elevation could be calculated, not
sea level.

It should be noted that both the ‘global’ and regional depth distributions are a ‘maximum’
representation of the vertical uncertainties associated taxon-specific depth distributions. Additional
biological (e.g., associated species with a narrower depth range) or geomorphological (e.g., designation as
reef crest facies) information might be used to reduce the total vertical range associated with the
reconstructed sea levels, if such additional data were provided. Unfortunately, most samples currently
lack such information.

The use of modern analogues (including our OBIS-derived depth distributions) to define the palaeo-
water depth relationship has three primary caveats. First, for some sites the present may not be the most
appropriate analogue due to human influences70,71. For example, the modern coral fauna of Barbados is
not representative of the Pleistocene reefs due to reef destruction and loss of coral species, particularly the
mass mortality of once dense populations of Acropora palmata72,73. Fortunately, given the number of
fossil corals from Barbados in the database, the similarity between the recurrent patterns in species
dominance and diversity observed between the raised reef terraces of Barbados and the living reefs of
Jamaica74,75, first recognised by Mesolella76, justifies the use of modern regional depth distributions of
Jamaica as an analogue for Barbados. Second, the fossil record may not faithfully capture the living reef
assemblage and structure due to the potential for non-preservation and selective removal/alteration of
material by physical, chemical and/or biological processes (i.e., taphonomic processes77–81). Third, a key
assumption is the constancy and stability of the palaeo-water-depth relationship through time and,
although difficult to determine, there is some evidence from the Caribbean that the large stands of
branching A. palmata that dominated for the last 0.5 Ma are the same as those documented in the
Caribbean until the early 1980’s, when human-induced habitat changes forced major changes in
community structure72,73.

Using a facies formation range or biological indicative range. For the non-coral subset of samples,
we use the depth range or facies formation depth range as determined by the original authors. Where this
information is missing, we are unable to reconstruct past relative sea level. We assume a uniform
distribution for the relationship, in that the indicator may occur equally anywhere within the given
altitudinal range. Note, the original coral palaeo-water depth determinations would also have a uniform
distribution, and could be treated in the same manner, if desired.

Limiting data. For some samples, we are only able to say confidently that sea level was above or below
the (tectonically corrected) elevation of the sample at the time of its formation. For example, a fossilised
tree provides an upper limit on sea level at the time of growth, in that sea level must have been lower than
the elevation of the sample. This subset of data is included, although we are unable to confidently
reconstruct relative past sea levels, as such data can be very useful for constraining models of glacio-
isostatic processes.

(Tectonically) Corrected position (Zcp)
Where appropriate, the modern elevation of the sample is corrected for uplift or subsidence since the
time of formation, ensuring consistency between sites. For each sample, we are able to calculate the
(tectonically) corrected position12 (Zcp) (equation 3)

Zcp ¼ Esam -
ΔH
Δt

$ tsam
# $

ð3Þ

where, Zcp is the tectonically corrected elevation in m, and negative values are below sea level, Esam is the
elevation of the sea-level indicator referenced to mean sea level (MSL), ΔH/Δt is the recalculated uplift or
subsidence rate in m/ka, with increasing positive ages in kilo-years before present and; tsam is the
recalculated (and recalibrated in the case of radiocarbon analyses) age of the sample in ka, with increasing
positive ages in kilo-years before present (ka BP).
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a

b

Figure 5. An example of regional depth distributions for Acropora palmata from the Caribbean sub-basin.
(a) map of the fossil Acropora sp. samples (red open circles) and A. palmata observations used to constrain the
depth distributions (grey, filled circles); (b) Caribbean depth distributions for Acropora palmata (green) and
regional subsets (orange) represented as relative probability (normalised histograms, left panels) and
cumulative frequency distributions (right panels).
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Reconstructed Probability of Sea Level (PRSL)
We combine elevation uncertainties (including any uplift/subsidence correction) with the information
relating the indicator to sea level at the time of formation (i.e., the modern altitudinal distribution for that
indicator in relation to mean sea level) using the methodology of Hibbert et al.12. A schematic of this
procedure is given in Fig. 6. We use a Monte-Carlo approach of 350,000 simulations to derive a
probability maximum (PRSL) associated with each sea-level indicator position (Zcp) and a confidence
interval around that point. For each sea-level indicator, we obtain a set of randomly sampled values from
the corrected position (Zcp) uncertainty, and a set of randomly sampled values from the depth
distribution (arising from either the empirically derived depth distributions for coral samples or a
uniform distribution within a given formation range) and sum across the two errors. For each individual
sea-level indicator, we then have multiple instances across a combined error distribution. From this
set we can generate the probability distribution, and extract a probability maximum and the
associated 1, 2- and 3- sigma equivalent levels (68%, 95%, and 99% probability intervals) (the code used is
provided, Data Citation 3). Note, these are typically asymmetrical for fossil coral samples when our
modern, taxon-specific depth distributions are used to calculate PRSL. Users of the database
(Data Citation 1) are free to choose the relationship they deem most appropriate as we include the
palaeo-water depth determined by the original authors, our OBIS-derived depth distributions
(Data Citation 2), and the code (Data Citation 3) used to calculate PRSL.

The result is a probability distribution of relative sea level (PRSL) that incorporates both a eustatic, an
isostatic and other (e.g., hydro-isostacy, compaction etc.) components. Note, we do not account for any
glacio-isostatic processes as this is outside the scope of the present study. Additionally, we do not include
any tidal corrections to our reconstructed sea levels to account for past variability in the magnitude and

Figure 6. Schematic of relationship between, and uncertainty propagation for, the corrected coral position
(Zcp) and the probability of sea level (PRSL).
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spatial variation of past tidal regimes. In many publications, the modern tidal range is not reported and
variations in the past are poorly constrained at present.

Data Records
The database (Data Citation 1) is designed to include all available data, for example we include all
information relating to dating to enable users to recalculate the age, and associated metadata. ‘Data
descriptors’ details all fields used in the database and can be found in Table 7 (available online only). The
modern taxon-specific depth distributions (Data Citation 2) and the code (Data Citation 3) used to
reconstruct past sea levels from fossil samples are also available from Figshare. A summary of the
treatment of each the dataset in the database (Data Citation 1) can be found in ‘Supplementary Data’.

Technical Validation
In addition to ensuring consistency of data processing and any recalculations (age recalculation,
recalibration etc.), we have attempted to validate various data-processing steps, where appropriate, and
details for this are given below.

Age
Reported ages from the original publications are included in the database in addition to our recalculated
ages (and recalibrated ages in the case of radiocarbon). This provides a first check of our age
recalculations/recalibration. Note, that any uncertainty in the age determinations may propagate into our
reconstructions of past relative sea-level through the interaction with uplift/subsidence.

U-series. All geochemical data are included in the database to enable users to recalculate the ages, if so
desired. It should be noted that we do not screen the U-series ages for reliability. Users may select their
own screening criteria (limits on acceptable δ234Uinitial values, calcite content etc.) from the fields
included in the database (for examples, see ref. 12).

Figure 7. Investigation of the effect of variable ΔR on the calibrated age. This example uses corals from
Barbados82,83 with both U-series and radiocarbon dates. U-series ages (red, filled squares) are recalculated
assuming a closed system and the decay constants of Cheng et al.29. Radiocarbon data are recalibrated using ΔR
values: (left panel) of the original authors (dark blue, open circles); the original authors and a± 100 year
uncertainty (blue, filled circles); ΔR= 0 (green, filled triangles) and preindustrial value of ΔR=− 27± 11 years
derived from Reimer and Reimer (ref. 56) (orange, filled diamonds). In the right panel, the U-series ages are
compared to the recalibrated radiocarbon ages using ΔR values from the model of Butzin et al.84:
ΔR= 200± 100 years using a Gaussian (blue, open circles) and uniform (blue, filled diamonds) distribution;
ΔR= 900± 100 years using a Gaussian (dark blue, open circles) and uniform (green, filled diamonds)
distribution; a variable ΔR (yellow, filled circles).
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Radiocarbon. Regional deviations from the global offset between the atmosphere and the surface
mixed layer (i.e., the marine reservoir effect) are dealt with using an offset (ΔR) during calibration, with
ΔR often assumed to be constant through time. The resulting final calibrated probability distribution of
the sample therefore includes the uncertainty in the construction of the marine calibration curve
(currently Marine1353), but not the uncertainty in the variation in ΔR through time57. The effect on
resulting calibrated age of: (i) spatially and temporally variation of the regional marine reservoir
correction (ΔR) and; (ii) the effect of assuming a uniform, rather the Gaussian distribution for ΔR is
explored further here. The examples provided are for illustrative purposes only.
In order to investigate the possible magnitude of this effect—i.e., potentially disparate modern and glacial

values of ΔR for the same region—we explore the effect of using different values for ΔR, different error

Figure 8. Coral depth distributions for three commonly dated species in the fossil database. The data uses
observational and living data with a vertical depth precision of ≤ 0.25 m only. Coloured bars below each
histogram are the palaeo-water depth estimates for various sites (grouped by ocean basin; blue= Pacific Ocean,
orange= Indian Ocean, green=Caribbean) used by the original authors. Different coral growth forms are
indicated by text in brackets.
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distributions for ΔR (Gaussian and uniform distributions) for a marine dataset that possesses both radiocarbon
and U-series age determinations (corals from Barbados82,83). The calibrated ages (calibrated using the OxCal
calibration software, version 4.3 (ref. 52).) are compared to the U-series dates for the same samples
(recalculated assuming a closed system and the decay constants of 29) (Fig. 7). Note, this exercise is an example
only; for sea-level reconstructions, we would use U-series ages in preference to radiocarbon ages for these
samples, in order to negate both calibration issues and the unconstrained variable ΔR. Additionally, for this
example, we assume that the U-series ages for the samples are reliable, i.e., that there has been no addition or
loss of isotopes from the system (i.e., no open system behaviour) and negligible diagenetic alteration.
We recalibrate the radiocarbon ages using the following ΔR values: (i) those used by the original authors

(R= 400 years, therefore ΔR=−5 years82; R= 365± 60 years, therefore ΔR=− 40 years83); (ii) the values used
by the original authors± 100 year uncertainty (assuming a Gaussian distribution); (iii) the preindustrial ΔR
estimated for the Caribbean56 (ΔR=− 27± 11 years, n= 8; note, there are currently no observations from
Barbados in the online ΔR database56); (iv) using model output values84 (using an iterative approach of
transient, 3-dimensional simulations) that suggest variations in ΔR of 200 and 900 years for the Caribbean
during the last deglacial. We use the upper and lower limits of their simulations with an arbitrary uncertainty of
100 years (i.e., ΔR= 200± 100 years and ΔR= 900± 100 years) using both a Gaussian and uniform
distribution during calibration. Finally, we recalibrate the ages using temporally varying estimates of ΔR

a b

c d

Figure 9. An example from the Caribbean (using the species Acropora palmata) of the effect of using
different palaeo-water depth relationships on the resulting sea-level reconstructions. (a) the elevation
uncertainties for the fossil A. palmata data; (b) the reconstructed sea level assuming a uniform distribution and
a palaeo-water depth of 0 to 5 m; (c) the reconstructed sea level using our OBIS derived, ‘global’ species specific
depth distribution and; (d) the reconstructed sea level using our regional depth distributions. PRSL is
reconstructed using a Monte-Carlo simulation of samples; coloured shading indicated the 99th (pale blue),
95th (yellow), 85th (orange), 70th (red) and 50th (black) percent probability intervals. This example is for
illustrative purposes only and is not intended as a reinterpretation of the Caribbean A. palmata dataset.
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(derived from Butzin et al.84). Few of the of the recalibrated ages match the U-series ages for the samples,
although the calibrated ages using the authors original estimates, preindustrial ΔR and those with no ΔR
applied, offer a reasonable first approximation (Fig. 7). Using the modelled deglacial values for the Caribbean
does not improve the match, although a variable ΔR does approximate the U-series ages slightly better than
either of the model extremes (using both the Gaussian and uniform distributions). In this example, we are
fortunate that the samples also possess U-series ages but it does illustrate the magnitude of the effect that
choices regarding the ΔR value may have on the resulting age. This effect would be most acute during
time intervals such as the last deglaciation, as major reorganisations in ocean circulation (as well as variations
in 14C production and sequestration by the various reservoirs) are documented85–87. The sites in the database
(i.e., primarily mid to low latitudes) should mitigate the magnitude of these effects because the scale of the
oceanic changes (and hence ΔR) at those latitudes is smaller than at the higher latitudes88. The ‘distortion’ in
age due to variations in ΔR is likely greater than the effects of uncertainties in both the tectonically corrected
elevation (Zcp) and reconstructions of sea level probability (PRSL) for this interval of time, given the relatively
low rates of both subsidence and uplift for most sites in the database, and the relatively young ages of the
samples. The example illustrates the current difficulty in constraining ΔR through time. Therefore, we apply
only the preindustrial estimates56 for the marine fossils when recalibrating ages in the database. Refinements in
both the age determinations and reconstructed sea-level probability (PRSL) for radiocarbon-dated marine sea-
level indicators could be achieved as more robust constraints on both the spatial and temporal variation in ΔR
through time become available.

Coral depth distributions
We compare our ecologically derived depth distributions of modern corals to: (i) other estimates/
observations of the maximum depth of coral species at both global89,90 and local geographic scales75,91–97

(Fig. 3) and; (ii) palaeo-water depth determinations of the original publications (Fig. 8). The median and
95% confidence limits derived compare favourably with both the global and regional (where available)
modern observations of the maximum depth observed for most species (Fig. 3). This lends confidence
that the use of our ecological depth distributions is reasonable and, that use of a modern-analogue
approach provides a first-order approximation of the relationship between the elevation of the fossil coral
and sea level at the time of formation.

The global, ecologically derived depth distributions also compare favourably with palaeo-water depth
estimations, originally derived using a variety of methodologies (e.g., modern assemblage, coral diversity/
distribution) and geographical scales (site-specific to ocean basin scale comparisons). Figure 8 illustrates
for each of three commonly dated coral taxa our ecological depth distributions and the palaeo-water
depths. The modern ‘global’ estimates broadly replicate the palaeo-water depths. However, our depth
distributions are unlikely to capture the full complexity in species distribution and diversity observed in
modern coral reefs, nor are they able to capture all details of the site-specific relationship between corals
and sea level. Therefore, these ecological depth distributions should be considered as ‘maximum’, first-
order approximations of the relationship between the elevation of the coral and sea level at the time of
formation. The effect of using different depth distributions on reconstructed sea-level probability (PRSL) is
illustrated for fossil Acropora palmata using data from the Caribbean (i.e., using the sub-basin and
regional depth distributions) (Fig. 9). Once the elevation uncertainties are combined with either the
palaeo-water depth estimates (assuming a 0 to 5 m depth preference and a uniform distribution, Fig. 9b)
or the taxon-specific depth distributions (Fig. 9c), the regional depth distributions (Fig. 9d) result in
‘tighter’ PRSL estimates for Barbados than either the palaeo-water depth or the Caribbean sub-basin depth
distribution. Therefore, using a well-constrained, regional ecological depth distribution offers some
promise of refining the vertical precision of reconstructed sea levels, and allows past sea levels to be
reconstructed for samples where no information is available to define the relationship between the
elevation of the fossil coral and sea level at the time of formation. Modern site-specific assemblage studies
(i.e., documenting modern reef biota, facies and environmental characteristics) provide perhaps the best
description of this relationship but our ecologically derived depth distributions (i.e., where only taxa and
depth occurrence is given) offer a reasonable first-order approximation. Users of the database are able
to use either the authors’ original palaeo-water depth determinations or our taxon depth distributions
(at the ‘global’ or regional scale, Data Citation 2).

Tectonic corrections
The only independent (i.e., not constrained using the fossil sea-level indicators themselves) tectonic
corrections are those for Tahiti and Mururoa Atoll (both French Polynesia16–18). Hence, we are unable, so
far, to validate the uplift/subsidence terms used in the database. This remains one of the main
outstanding issues that hindering reconstructions of past sea level.

Code availability
We make the code used to calculate PRSL available as a separate text file (Data Citation 3). This contains
significant modifications from that given as a supplement12,98 to incorporate a uniform facies formation
depth distribution and non-Gaussian age uncertainties.

Usage Notes
This release comprises 4 files (details of the file formats are within the square brackets):
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1. Database [tab delimited file; ‘Data Citation 1’]
2. Summary of treatment of all the datasets compiled [text file; ‘SupplementaryData’]
3. Empirically derived coral depth distributions used to reconstruct sea level [tab delimited table; ‘Data

Citation 2’]
4. Code: calculation of PRSL for both ‘coral’ and ‘range’ type vertical uncertainties, as well as U-series and

radiocarbon ages [pdf of Matlab code file; ‘Data Citation 3’]

We welcome contributions from authors of additional or clarifying information. These will be
incorporated into any subsequent iteration of the database. When using data in this compilation, the
original data collector(s) as well as the data compiler(s) should be credited99.

Users are welcome to use either the original authors’ (included in the database, Data Citation 1) or our
ecologically derived depth distributions (Data Citation 2) to relate the elevation of the coral and sea level
at the time of formation. Both are included in the database release, in addition to the code for
reconstructing PRSL (Data Citation 3).

No attempt has been made to correct for U-series open system behaviour, nor do we screen for age
reliability. The inclusion of all metadata enables users to determine their own appropriate age reliability
screening criteria. For simplicity, we record only the 68%, 95% confidence intervals, mean and sigma of
the calibrated radiocarbon output. Again, the inclusion of all data and metadata relating to each
radiocarbon determination enables users to both replicate our outputs and adapt the input into
calibration software, if so desired. We do not attempt to account for temporal variations in ΔR.

The reconstructed PRSL is a function of both eustatic and glacio-isostatic (GIA) processes. No
correction has been made for GIA processes as this is outside the scope of this study.
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