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Abstract

Salt giants are massive salt deposits (hundreds of metres thick) 
that form during the evaporation of semi-enclosed seas. The 
drivers of salt giant formation and their feedbacks on global and 
regional environmental change remain debated. In this Review, we 
summarize the boundary conditions, causes and consequences of the 
Mediterranean Messinian salinity crisis (MSC; 5.97–5.33 million years ago).  
Salt giant formation is more complex than the simple evaporation 
of an enclosed sea. Instead, the tectonic setting of an evaporative 
basin largely determines the timing and mode of salt formation, 
with superimposed impacts of orbital-scale climate and sea-level 
fluctuations. These drivers triggered precipitation of carbonates, 
gypsum, halite and bittern salts, with well-defined orbital cyclicities 
in carbonate and gypsum phases. Removal of Ca2+ during salt giant 
deposition decouples the oceanic Ca2+ and HCO3

− sinks, causing 
reduced CaCO3 burial and, consequently, increased ocean pH, lower 
atmospheric partial pressure of CO2, and global cooling. Salt giants, 
which reflect a net evaporite-ion extraction of ~7–10% from oceans and 
persist over million-year timescales, could therefore be an important 
climate driver but are currently underconsidered in long-term carbon 
cycle models. Future research should use advanced hydrogeochemical 
models of water–ocean exchange to further explore interactions 
between salt giants and environmental change.
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owing to tectonic processes and, as a result, the Mediterranean water 
level has been interpreted to have dropped 800–2,000 m (refs. 6–8). 
During the final MSC stage, also known as ‘Lago Mare’, the Mediterra-
nean transformed into a megalake with highly fluctuating, hypersaline 
to brackish conditions. The MSC was terminated by a massive flood 
from the Atlantic that reintroduced open marine conditions across the 
Miocene–Pliocene boundary in the Mediterranean9–11.

Seismic profiles across deep basinal sequences and outcrops along 
tectonically uplifted marginal basins provide a picture of the spatial 
distribution of Mediterranean evaporite units and their stratigraphy12–16 
(Fig. 1). The Late Miocene landlocked Mediterranean configuration 
amplified its responses to regional and global climate fluctuations, 
and caused distinct cycles in pre-MSC and post-MSC deposits, which 
have aided construction of a detailed chronostratigraphic framework, 
tuned with precessional resolution (~20 kyr) to astronomical insola-
tion curves17–19. This astrochronology has resulted in a stratigraphic 
consensus scenario for the Mediterranean salt giant15 that provides 
a foundation for high-resolution geochemical evaporite fingerprint-
ing20,21 and for observational and modelling studies of the underlying 
forcing mechanisms22,23. These advances indicate that salt giants do 
not form in basins that simply isolate and desiccate (Box 1); rather, 
complex subbasin settings have a crucial role in determining the timing 
and mode of salt formation24,25, with contributions from various forc-
ing mechanisms such as tectonics, sea-level change and hydrological 
connectivity with the ocean26.

In this Review, we discuss the latest developments in MSC research, 
in terms of salt formation, hydrological conditions and drivers of 
basin desiccation. We build on previous detailed overviews of MSC 
stratigraphy15,27, Mediterranean evaporite distribution patterns4,16 
and Atlantic–Mediterranean connectivity26,28, and expand on the driv-
ers and feedbacks of the MSC that are applicable to other salt giants 
more generally. In particular, we reflect on the regional and global 
environmental consequences of salt giant formation, rapid ion return 
during basin reconnection, and slow ion return during weathering over 
geological timescales, including impacts on the global carbon cycle.

The Mediterranean salt giant
Tectonic processes can lead to near-isolation of continental seas 
and deposition of extensive salt deposits. The onset of MSC evapo-
rite deposition and establishment of earliest Pliocene marine condi-
tions provide insights into both restriction and reopening of such a 
marginal sea. The Mediterranean salt giant formed in a convergent plate 
tectonic setting with the African plate moving northward with respect 
to Europe and Iberia. This convergence is not complete, so it is possible 
that the Messinian evaporites will, in time, represent merely the initial 
phase of salt giant formation associated with ongoing Mediterranean 
basin closure.

Geological setting of the MSC
Salt giant formation requires the presence of a sill that restricts an evapo-
rative basin from exchange with the open ocean. These sills generally 
form when continents collide or break apart by plate tectonic processes 
and provide the necessary raised lip across which exchange becomes 
restricted and allows development of water bodies with  different 
 chemical and physical properties.

The strait at Gibraltar that connects the Mediterranean with the 
Atlantic is currently 284 m deep at the Camarinal sill and 14.3 km wide at 
the Tarifa narrows29. Palaeogeographical reconstructions of the Gibral-
tar region indicate that the early Messinian Atlantic–Mediterranean 

Key points

 • Giant salt deposits (gypsum and halite) formed in the Mediterranean 
during the Messinian salinity crisis (MSC), and their timing and mode 
depended on tectonic impacts on the evaporative basin.

 • Geodynamic and eustatic sea-level forcing are crucial for initiating 
and terminating salt giant formation with a subsidiary role for  
regional climate.

 • The main controls on evaporitic mineral precipitation are the 
magnitude of freshwater deficit and the extent to which water 
exchange between basin and ocean is limited.

 • Evaluation of an updated sea-level record for the time interval 6.4 to 
5.0 million years ago demonstrates that sea level is a viable driver of the 
prominent MSC sedimentary cyclicity, in addition to orbital variation in 
the freshwater budget.

 • The formation and dissolution of giant calcium sulfate (gypsum and 
anhydrite) deposits can have global consequences as an episodic 
driver of carbon cycle changes. Oceanic Ca2+ removal via CaSO4 
deposition decouples the oceanic Ca2+ and HCO3

− sinks, causing a 
decrease in CaCO3 burial and, consequently, increased ocean pH, 
lower atmospheric partial pressure of CO2, and global cooling.

 • Most biogeochemical models assume that evaporite precipitation 
and weathering are balanced over timescales of more than 100 kyr. 
However, salt giants can reflect about a 7–10% net extraction of 
evaporite ions from ocean water that persists over million-year 
timescales, suggesting that current carbon cycle models could be 
missing an important long-term climate driver.

Introduction
The opening and closure of oceans and seas by plate tectonic processes 
is often marked by formation of marginal basins that have restricted 
water exchange with the open ocean. Under negative hydrological 
budgets, where freshwater loss by evaporation exceeds the supply from 
rivers and rainfall, periods of limited exchange with the open ocean can 
lead to precipitation of enormous evaporite deposits in the incipient 
or dying basin, termed ‘salt giants’. A small-scale modern example of 
an evaporative basin is the Dead Sea, a deep hypersaline lake that is 
entirely disconnected from the ocean. Salt giants have formed epi-
sodically through Earth’s history, including the Palaeozoic (Australia, 
United States, Russia, northwest Europe), Mesozoic (South Atlantic, 
Gulf of Mexico) and Cenozoic (Mediterranean, Red Sea, Central Europe) 
eras1,2. Halite (NaCl) and gypsum or anhydrite (CaSO4) extraction from 
seawater during salt giant formation can represent >5% of the total 
ocean dissolved salt content3,4, which disrupts local ecosystems in 
evaporitic seas and modifies global ocean chemistry5.

The Mediterranean Messinian salinity crisis (MSC) is one of the 
youngest salt giants in Earth’s history, having formed between 5.97 and 
5.33 million years ago (Ma) when the Mediterranean became landlocked 
in the Late Miocene. During the MSC, more than 1 million km3 of salt was 
extracted from the global ocean and precipitated as gypsum deposits 
hundreds of metres thick and halite units kilometres thick in the Medi-
terranean basins. The marine Atlantic connection progressively closed 
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connection was a foreland-basin system with multiple gateways 
through southern Iberia and northern Morocco26,28. These Betic and 
Rifian corridors, respectively, closed progressively in pre-MSC times, 
and marine connectivity evolved toward a single proto-Gibraltar-Strait 
gateway for the MSC28,30. Mediterranean–Atlantic connectivity could 
also have been partially controlled by an emergent volcanic chain on 
the eastern Alboran margin that formed a partial landbridge between 
northern Morocco and southeastern Spain31. Water flux modelling 
indicates that exchange patterns with the Atlantic depended on relative 
sill depths32. Crucially, two-way flow exists in both corridors when the 
shallowest corridor is more than half as deep as the deepest corridor, 
whereas one-way flow exists in both corridors when the shallowest cor-
ridor is less than half as deep as the deepest corridor32. Uplift of the deep 
Rifian corridor at ~7 Ma (ref. 30) could therefore have altered exchange 
patterns in the shallow Gibraltar Strait from mainly Atlantic inflow to 
two-way flow, consistent with simultaneous benthic faunal changes in 
the Alboran basin33 and deep Mediterranean records in which the first 
signs of restricted conditions and increased water mass stratification 
occurred at ~7 Ma (ref. 34).

MSC stratigraphy
Mediterranean Messinian evaporites were initially reported in 1867 
(ref. 35) and were later described by field geologists who documented 
~100-m-thick gypsum units between marine sequences in several 
Italian basins36,37. In the 1970s, the widespread presence of evaporite 
units across the Mediterranean was confirmed by Deep Sea Drilling 
Project (DSDP) Leg 13 (refs. 3,38,39), although coring only reached the 
 uppermost MSC successions.

The depositional and stratigraphic architecture of Messinian 
evaporites varies across the Mediterranean and depends mainly on 
tectonic settings and water depths. Four main settings are recognized 
(Fig. 2). First, there are marginal zones with mainly erosional features 
that have commonly been related to multiple drawdown events6,16 in 
which subaqueous erosion by dense cascading waters might also have 
had a role40. Second, there are shallow, silled basins (Adriatic region, 
southeast Spain basins) containing the most complete marine gypsum 
successions41, overlain in places by erosional surfaces and/or younger 
lacustrine and continental deposits with intervals characterized by 
brackish Lago Mare fauna24,42–44. Third, intermediate-depth basins (Sic-
ily, Cyprus, Balearic promontory) can be complicated by substantial 
tectonic deformation during and since the MSC45,46. Basal MSC units 
in these intermediate settings comprise marine gypsum47 or anoxic 
shales devoid of evaporites48,49. Where marine gypsum is observed, the 
evaporites might not be preserved in situ because they are commonly 
found as a range of reworked deposits from gypsarenites to gypsum 
olistostromes15,50. The final, fourth setting includes deep central basins 
that are found in the western (Liguro-Provençal, Algerian) and eastern 
(Ionian, Levant) Mediterranean, separated by the Strait of Sicily, which 
have strikingly different depositional architecture on seismic refection 
profiles12,16.

Deep central western Mediterranean basins typically contain a 
seismic ‘trilogy’ with a lower unit (mass-transport deposits), a mobile 
unit (halite) and an upper unit (gypsum-clastic alternations)12. However, 
no direct lithological data are available for the deep central western salt 
giant where only the topmost MSC has been sampled, which generally 
contains gypsum with brackish water fauna51. The easternmost deep 
Mediterranean (Levant Basin) contains an evaporitic succession >1 km 
thick with six seismic subunits52,53, four transparent units composed 
of halite and two units composed of claystones54,55. Cuttings from 

industrial drill holes suggest that evaporite deposition started with 
only a few metres of anhydrite52,56, followed by the halite-dominated 
succession, which terminated after a truncation surface with a roughly 
100-m-thick ‘unit 7’ composed of shales, sands and anhydrite14. This 
top unit of the MSC in the deep Levant Basin is interpreted as having 
been deposited above the Intra Messinian Truncation Surface (IMTS), 
a dissolution surface related to substantial dilution and stratification 
of the eastern Mediterranean water column14.

Detailed stratigraphic studies from both onshore sequences and 
offshore seismic data indicate that the Mediterranean contains sev-
eral different evaporite successions15 (Figs. 1, 2). There are at least 
four main evaporitic deposit types observed in MSC successions now 
exposed on land. First, evaporitic carbonates known as the Calcare di 
Base (Sicily)57,58 and the Terminal Carbonate Complex (SE Spain)59,60 
formed at the Messinian basin margins. Second, predominantly marine 
gypsum known as the Primary Lower Gypsum unit (PLG; Spain, Italy)21,41 
mainly precipitated in depocentres of shallow silled basins. Downslope 
reworking of the PLG by tectonic activity and gravitational sliding is a 
common feature of intermediate-depth basins (Sicily, Balearic prom-
ontory, Cyprus)46,61. Thick gypsum–mudstone alternations and the 
absence of desiccation features in the PLG indicate that Mediterranean– 
Atlantic connectivity persisted with two-way flow. Third, halite is only 
present in successions from intermediate and deep central basins 
(Sicily, Liguro-Provençal, Levant)62. Marine inflow is still required to 
accommodate kilometre-thick halite successions, but outflow was 
probably blocked. Lastly, the youngest MSC evaporites are gypsum 
with continental geochemical signatures of the ‘Upper Gypsum’ unit 
(UG; Sicily, Cyprus)24,63. This gypsum unit requires additional freshwa-
ter influx from the Paratethys and alternates with clastics that contain 
brackish Lago Mare fauna24. Also, volumetrically minor K–Mg-salts 
( bittern salts) are sometimes associated with halite. Except for the 
halite in the western Mediterranean, all of these evaporites are interbed-
ded with detrital clastics and/or hemipelagic sediments. The transition 
from non-marine Messinian to deep marine Zanclean deposits marks 
the end of the MSC, and is often conformable without evidence of 
major erosion10,64.

Astronomical cycles in Mediterranean evaporites
Miocene and Pliocene Mediterranean sedimentary successions are 
marked by precession-paced sapropel-marl cycles with characteristic 
patterns that can be correlated across the Mediterranean and to astro-
nomical curves17,18,65 (Fig. 3). The sapropels record humid conditions at 
precession minima and insolation maxima and the marls reflect arid 
conditions at precession maxima and insolation minima. Cyclostrati-
graphic correlation and astronomical tuning of pre- and post-MSC sedi-
mentary successions provide accurate ages for both the onset of PLG 
precipitation (5.97 Ma)66, with evaporitic limestones in some intermedi-
ate and marginal basins forming slightly earlier (6.08–6.03 Ma)13,67,68, 
and the marine sediments that immediately overlie the MSC succes-
sions throughout the Mediterranean (5.33 Ma)69. This astronomical 
tuning constrains the MSC duration to 640 kyr. Dating within the MSC 
interval itself is more uncertain because of a lack of high-resolution 
independent age control points; for example, magnetostratigraphic 
constraints are lacking, as the entire MSC occurred within a single 
reversed magnetic polarity subchron18,70 (Fig. 3), biostratigraphic mark-
ers are absent because of the extreme environmental conditions, and 
datable volcanic ash layers are scarce15,43.

During the PLG phase, marine carbonate–marl and gypsum–marl 
cycles accumulated subaqueously in both shallow and intermediate 
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basins41 (Fig. 3), which precludes a major Mediterranean sea-level fall 
at the onset of the MSC71. Moreover, marine strontium isotope data 
are broadly consistent with a high Mediterranean water level that 
permitted restricted two-way Atlantic–Mediterranean exchange21,72. 
Assuming that cyclic gypsum–marl alternations followed the same 
regional precessional climate forcing as pre-MSC and post-MSC Medi-
terranean sediments, correlation of 16–17 documented sedimentary 
cycles in the PLG to astronomical curves suggest that PLG deposition 
ended at <5.6 Ma41,73 (Fig. 3). However, numerical modelling of water 
and salt balances indicates that the gypsum–marl cycles could have 
resulted either from precession-driven ~20% hydrological budget 
changes and/or oscillating gateway restriction caused by sea-level 
fluctuations of ~10 m competing with tectonic uplift and marine  
gateway erosion74,75.

Deep Mediterranean halite units lack absolute age control. In 
the western Mediterranean, halite is thought to have succeeded PLG 
deposition and is correlated tentatively with the TG12–14 glacial inter-
val (5.59–5.55 Ma) in oxygen isotope (δ18O) records27,76 (Figs. 3, 4). The 
timing of initial eastern Mediterranean halite deposition is contested, 
with suggested ages ranging from 5.97 Ma, equivalent to the PLG onset 
in marginal basins77, to 5.59 Ma, at the end of the PLG78. There is a third 
possibility, that halite deposition partly coincided with the start of 
glacial stage TG22 at ~5.8 Ma, as demonstrated by comparing global 
sea level with MSC sill-depth scenarios (Fig. 4). Halite is thought to 
have been deposited when Atlantic–Mediterranean exchange was 
more restricted than during the PLG phase79 (see also Supplementary 
note). In geochemical models, a severely restricted scenario with no 
Mediterranean outflow (that is, with Mediterranean sea level close 
to, or below, sill depth) could support deposition within 80 kyr of the 
deep-basin halite body observed in seismic profiles79. In this scenario, 
evaporated freshwater is replaced continuously by Atlantic inflow, 
which generates the necessary ion fluxes for halite deposition. The 
evaporite mineral paragenesis resulting from this constant marine 
supply with no ion loss via Mediterranean outflow is distinctly different 
from that generated by evaporation of a fixed seawater volume. Instead 
of sequential evaporite phases precipitating as brine concentration 
increases, mineral precipitation fields overlap substantially, with car-
bonate, gypsum and halite precipitation potentially coexisting up to 
bittern salt formation80.

The final Mediterranean salt giant phase is the most enigmatic, with 
alternating UG beds and brackish Lago Mare deposits that contain biota 
of Paratethyan (former Black Sea and Caspian Sea system) affinity43. 
In intermediate basins (Sicily, Cyprus), six to seven gypsum–brackish 
marl alternations are observed27,81. Strontium isotope ratios from both 
gypsum crystals in the UG and ostracods from Lago Mare marl hori-
zons suggest a dominantly freshwater system with only minor (~20%) 
Atlantic contribution24,63. Assuming that UG cycles were precession- 
driven, downward tuning from the lowermost Zanclean suggests that 
this final MSC phase started at 5.52 Ma (ref. 24). In shallow silled basins, 
time-equivalent continental and lacustrine sediments contain influxes 
of high-diversity Paratethyan ostracods, but no gypsum42,82.

Salt giant forcing mechanisms
Marine gateways have a critical role in the exchange of water, heat, salt, 
and nutrients between oceans and seas. During the MSC, water exchange 
with the open marine Atlantic Ocean and the brackish Paratethys Sea 
were influenced by a complex combination of geodynamic (tectonic 
movements in gateway regions), glacio-eustatic (global sea-level fluc-
tuations) and palaeoclimatic (hydrological budget changes) processes 
that all had a role in Messinian salt giant formation. Tectonic uplift and 
sea-level lowering can have similar effects on water exchange through 
gateways and are difficult to unravel. Here, we present and evaluate 
current understanding of the geodynamic, ice-volume and sea-level 
forcings on the MSC and then revisit the role of superimposed regional 
palaeoclimate forcing.

Geodynamic forcing
The main geodynamic processes in the Gibraltar orogenic system 
involve African–Iberian plate convergence83, slab tearing under the 
eastern Betic Cordillera84, and mantle resistance against Gibraltar 
slab drag85. Mantle tomography and other seismological investiga-
tions provide a clear present-day 3D image of Gibraltar slab geometry  
and lateral continuity with surface plates, and where it is detached 
and might have delaminated from continental lithospheric mantle84,86  
(Fig. 5). Early to Late Miocene westward slab roll-back resulted in 
thrusting of the Alboran domain over the African and Iberian mar-
gins. Indentation of the Rif Mountains by slab dragging together 
with slab detachment beneath the Betic Cordillera (Fig. 5a,b) can 
explain gateway opening, closure and reopening87. During the late 
Tortonian (between 8 and 7 Ma), the Betic gateways were uplifted by 
isostatic rebound related to gradual slab tearing below Spain. Slab 
dragging initiated thick-skinned  tectonics in Morocco that also closed  
the Rifian corridor88.

During the MSC, sills within the Mediterranean basin also had 
important roles. In shallow silled basins where PLG developed, geo-
chemical evidence indicates that climate oscillations89 modified condi-
tions within the basins, resulting in localized density contrasts across 
the sills, even before the MSC90. The Sicily sill, which separates the 
western and eastern Mediterranean basins, had a crucial role in water 
and salt transport across the Mediterranean before, during, and after 
the MSC11,91,92, and likely generated the different MSC stratigraphies 
in the deep central basins. Other important sills were the tectonically 
active Gargano promontory (Italy)93 and Cyclades region (Greece)94 
that separate, respectively, the Adriatic and North Aegean basins from 
the open eastern Mediterranean (Fig. 1). These restricted basins per-
sisted as two evaporite-free largely isolated megalake systems during 
the halite and UG phases, probably influenced by extensive European 
river runoff82,94 (Fig. 1).

In the eastern Mediterranean, the marine Neo-Tethys connec-
tion to the Indian Ocean had already closed in mid-Burdigalian times 
(~19–17 Ma), driven by Africa–Arabia–Eurasia collision95,96, which cre-
ated the first landbridge for mammal migration into and out of Africa. 
Consequently, this gateway probably played no role in Messinian salt 

Fig. 1 | Mediterranean MSC evaporite stages. a, Map of the Mediterranean 
region with the most important seas, straits and mountain ranges labelled. 
b–d, Schematic maps of the Mediterranean and Paratethys seas during three 
evaporite stages15 with the main sites that crop out onshore. Non-marine Upper 
Gypsum (UG) stage with lacustrine deposits and Paratethyan fauna known as the 
‘Lago Mare’ in Mediterranean highstands and evaporites in lowstands (panel b). 

The desiccation stage during which halite was deposited (panel c). Water level 
during the marine Primary Lower Gypsum (PLG) stage with Atlantic connectivity 
(panel d). For detailed distribution patterns from both offshore seismic and 
onshore field data, see previous work3,4,12–14,16,46,94,159. This series of maps illustrates 
the sequence of evaporite units that define the MSC during the restriction and 
isolation of the Mediterranean from the Atlantic.
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giant evolution. Instead, the most important eastern connection dur-
ing the MSC was with the Paratethys domain (Fig. 1). The present-day 
connection has sills 55 m deep and 1.2 km wide at the Dardanelles 

near Çanakkale, and 36 m deep and 698 m wide at the Bosporus near 
Istanbul97 (Fig. 1a). Messinian palaeogeographical evolution of the  
Mediterranean–Paratethys gateway is poorly understood, but it affected  

Box 1

Evaporitic salt formation
Ocean chemistry has changed substantially 
over time166. One driver for this change is the 
precipitation and weathering of giant evaporite 
deposits. The most common marine  
evaporite minerals — carbonates, gypsum, 
anhydrite, halite and the bittern salts (kainite, 
carnallite, bischofite) — precipitate from 
seawater when the concentration of their 
constituent ions (Na+, Cl−, Ca2+, SO4

2−, K+, 
Mg2+, HCO3

−) exceeds a threshold known as 
the solubility product167,168. Ion concentration 
in evaporite basins depends on both water 
fluxes to, and the total water volume of, the 
marginal basin. Ions are added to these basins 
by water inflow from the ocean and rivers, 
and leave the basins only by outflow to the 
ocean or by mineral precipitation. The water 
volume in an evaporite basin is conserved if a 
sufficient oceanic connection exists, but it can 
decline through net evaporative drawdown if 
the connection becomes severely restricted 
or blocked; in both cases, net evaporative 
freshwater removal raises the dissolved ion 
concentration in basin waters. The main 
controls on evaporitic mineral precipitation 
are, therefore, the magnitude of the freshwater 
deficit and the extent of water exchange 
limitation between basin and ocean (see the 
figure, part a, which shows the controls on water 
and dissolved ion proportions from the ocean 
versus continental runoff during the Messinian salinity crisis, MSC).

The simplest conceptual model for evaporitic salt formation 
considers a seawater volume disconnected from the ocean, subject 
to evaporative drawdown, while receiving no further ions from either 
seawater or river runoff. The Mediterranean salt giant, however, did 
not form under these conditions because complete evaporation of 
a 3,000-m-thick seawater column, with an average salinity of ~35‰, 
would leave behind only about 40 m of halite, a fraction of what is 
preserved in the deep central basins (~2.5 km of halite).

The evaporite-forming ion concentration in river water is, 
respectively, typically 1,000 (Na+, Cl−), 100 (Mg2+, SO4

2−, K+) and 10 
(Ca2+) times lower than in seawater169,170. Consequently, continental 
runoff influences marine evaporite mineral precipitation only if 
oceanic input is restricted severely or cut off entirely.

A qualitative picture of the impact of ocean–continental water 
mixing on dissolved ions, as a function of seawater exchange 
restriction, is shown in the figure. To illustrate these processes, 
a simplified water balance of an idealized marginal basin, with a 

sill causing restriction to the open ocean, demonstrates how the 
fractions of oceanic water (red curve) and dissolved ions (blue curve)  
change as a function of seawater exchange flux (part b). In an ideali-
zed scheme for ocean water and ion fractions during the MSC over 
time (part c), note that continental runoff becomes a relevant ion 
source to the basin only when its marine connection is restricted 
severely, or cut off completely, from the ocean36.

Evaporites only evolve toward a ‘continental’ mineralogical 
signature when the continental input dominates the oceanic source. 
This is the case for the Upper Gypsum succession on Sicily where 
non-oceanic Sr isotope data from both gypsum and ostracods 
suggest minimal Atlantic contribution24. The relative abundances of 
many other evaporite-forming ions are much higher in river water 
than in seawater (in brackets): Mg2+/Cl− = 0.7 (0.1), SO4

2−/Cl− = 0.6 
(0.052), Ca2+/Cl− = 1.2 (0.019), K+/Cl− = 0.05 (0.018) and HCO3

−/Cl− = 2.5 
(0.004). Thus, when oceanic connection is highly restricted or 
blocked, carbonate and gypsum precipitation dominate, compared 
with the typical halite-dominated marine association140.
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hydrological, palaeoecological and palaeoenvironmental conditions 
in both domains94. Palaeontological data indicative of marine faunal 
exchange98,99 and strontium isotope data23 suggest that Mediterranean– 
Paratethys connectivity was established at 6.1  Ma100,101, before the onset  
of evaporite precipitation. Gateway geodynamics between the Med-
iterranean and Paratethys were then, as now, dominated by active 
westward growth and propagation of the North Anatolian fault zone, 
North Aegean extensional tectonics, and Cyclades domain uplift and 
exhumation102. These tectonic processes, combined with substantial 
lake-level fluctuations, resulted in episodic Mediterranean–Paratethys 
and Black Sea connection and disconnection ever since103,104.

Glacio-eustatic forcing
As yet, sea-level forcing of the MSC has been dismissed in most studies 
based on the assumption that its variations were obliquity-controlled 
(~40 kyr); using this period for sedimentary cyclicity would result in an 

MSC duration that is too long to match independent age constraints. 
However, an updated global δ18O synthesis indicates that the periodicity 
of ice-volume and deep-sea temperature fluctuations across the Late 
Miocene was controlled by precession, similar to Mediterranean climate 
cycles105 (Fig. 4). To assess whether sea level was an important forcing 
mechanism for Mediterranean isolation from, and/or reconnection 
to, the Atlantic Ocean106, we examine an updated sea-level record for 
the time interval 6.4 to 5.0 Ma relative to the present level (0 m; Fig. 4). 
By applying established box-model approaches to evaluate the evapo-
rite implications of gateway restriction74 (see Supplementary note), this 
updated sea-level record indicates that sill depths >41 m favour basinal 
hemipelagic carbonate (marl) deposition. Evaporative carbonate depo-
sition is favoured when the strait depth ranges between 22 and 41 m, 
gypsum deposition occurs between 13 and 22 m, and halite deposition 
occurs at depths <13 m. Friction would reduce exchange through the 
strait, so these threshold water depths are minimum estimates.
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The updated high-resolution record of global mean sea-level 
variations107 indicates that sea level alone cannot account for either the 
MSC onset or rapid re-establishment of normal open marine conditions 
at the beginning of the Pliocene. Tectonic strait restriction is needed to 
trigger the transition from open marine hemipelagites to evaporative 
carbonates (6.08–6.03 Ma) followed by gypsum precipitation from 
5.97 Ma (Fig. 4), while the MSC termination requires catastrophic, 
tectonic, strait opening to depths more than ~40 m below the lowest 

sea level of that time9,11. However, some stratigraphic features within 
the MSC are consistent with Late Miocene sea-level fluctuations. For 
example, with a shallow Mediterranean–Atlantic sill depth of 13−22 m 
(with the uplifted sill ~18 m below present-day sea level), sea-level 
fluctuations could explain the 16 gypsum cycles (magenta arrows in 
Fig. 4b) deposited during the PLG phase. In this scenario, sea-level 
influence on the gypsum cycles could have been irregular, potentially 
accounting for at least some observed variability in their thickness 
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indicate gypsum beds deposited during insolation minima. Cyclostratigraphy 
provides a detailed chronology of the Messinian salinity crisis (MSC) and a basis 
to correlate MSC events to global chronostratigraphic records. LMCIS, Late 
Miocene carbon isotope shift.
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and spacing. These calculations of lithological threshold depth ignore 
Paratethys inputs and precession-scale Mediterranean hydrologic 
budget fluctuations, which are likely to have varied; threshold depths 
will be somewhat smaller under more humid conditions and greater 
under more arid conditions (see ref. 72 for sensitivity analysis). Changes 
in Paratethys inputs and Mediterranean hydrology might explain the 
absence of halite between 5.8 and 5.7 Ma, when it should have been 
triggered by two marked sea-level falls (Fig. 4b). The onset of well−
documented halite precipitation (at ~5.6 Ma) requires further tectonic 
strait restriction (red shading in Fig. 4b). Maximum gateway restriction 
occurred at 5.55 Ma when global sea level was lowest, consistent with 
an episode of Mediterranean sea-level fall. The end of halite deposition 
could have been terminated by the sea-level rise at ~5.53 Ma if the sill 
was below 6 m above present sea level.

For the UG phase (green shading in Fig. 4b), a (virtually) closed 
Atlantic connection with the basin in an essentially drawn-down 
state is required to obtain regional brackish to brine-water ‘lakes’, 

non-marine evaporite deposition, and continental-dominated Sr iso-
tope ratios11,24,25. This high-resolution sea-level record is consistent 
with (potentially seven) partial reconnection events (green arrows in 
Fig. 4b) associated with minor Atlantic inflow that might correspond 
to the seven gypsum cycles observed in the UG24,81.

Palaeoclimate forcing
Salt giant formation requires an excess of evaporation over precipita-
tion and runoff into the basin. These factors are difficult to quantify 
from geological records and reconstructions. For example, palaeo-
runoff requires robust knowledge of the palaeogeographical evolution 
of the complete catchment area of an evaporite basin, including its 
orography and palaeo-channels. However, global climate models can 
provide some constraints65,108,109. We here evaluate climate variations 
over the Mediterranean basin and its catchment area, including the 
Paratethys and the north African monsoon region immediately before, 
during and after the MSC.
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salinity crisis. a, Sea-level relative to present day over the past 10 Myr. The 
Plio-Pleistocene record (red) is based on benthic δ18O deconvolution107,117 using 
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exchange through the strait that delimit precipitation of halite (H), gypsum (G), 
evaporative carbonate (EC) or hemipelagic marl deposition (M), as detailed in 
the Supplementary note. The inferred Messinian salinity crisis (MSC) sill scenario 
(grey shading) assumes a disconnected (drawn-down) condition during halite 
and Upper Gypsum (UG) deposition. MSC phases are coloured as in Fig. 3. Purple 
up arrows indicate potential gypsum phases in the Primary Lower Gypsum (PLG), 
and green down arrows indicate around seven potential (mostly continental) 
gypsum phases in the UG. From this sea-level reconstruction, it can be seen that 
eustatic sea-level change was not a primary cause of the onset or end of the MSC, 
although seawater influxes over the sill during sea-level highstands provided the 
water and ion resupply needed for ongoing evaporite formation.
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Several records indicate that the Mediterranean salt giant formed 
during a period of global cooling between 7.2 and 5.5 Ma (refs. 110–112),  
which is likely to have been triggered by a global atmospheric decline 
in CO2 partial pressure (pCO2) to a minimum between 6.5 and 5.8 Ma 
(ref. 113). The Late Miocene pCO2 decrease has been linked to a ~1‰ drop 
in global benthic foraminiferal δ13C, known as the Late Miocene carbon 
isotope shift (LMCIS; Fig. 3), between 7.6 and 6.6 Ma (refs. 33,114). 
This drop is amplified in the Mediterranean, probably because of 

progressive gateway restriction in the Gibraltar region since ~7.1 Ma 
(ref. 115). The absence of a humidity decrease from the pre-evaporitic 
marls to the base of the PLG gypsum89,116 implies that MSC salt giant 
formation was not likely to have been triggered by Mediterranean 
climate change. As atmospheric pCO2 began to rise after 5.5 Ma, 
warming occurred113. This warming trend started at the transition 
between isotope stages TG12 and TG11, coincident with the end of halite 
deposition and the onset of Mediterranean UG formation (Figs. 3, 4). 

a

b

~7–5.33 Ma: shallow,
5.33 Ma onwards:
deepening due to
slab pull

Strait of Gibraltar

N

~8–7 Ma: progressive closure  by
rebound after slab detachment
and WSW-ward slab tearing

Betic corridor

Potential threshold to
connectivity between
~ 6–5 Ma

East Alboran volcanic arc

~7 Ma: closed by NE–SW
shortening due to slab
dragging

Rifian corridor

100 km

AFRICA

AFRICA

AFRICA

Iberia

N

Subducted slab

NE African margin
After ~8 Ma, relative motion
between the slab and the
African lithosphere caused
SSW-ward indentation

Iberian margin
Slab tearing towards
Gibraltar caused progressive
lithosphere rebound

African absolute plate motion

Iberia absolute plate motion
Central–eastern Betics motion

Slab dragging motion

Iberia

Fig. 5 | Geodynamic context of the Messinian 
salinity crisis. a, Schematic topography of the 
Gibraltar region before the Messinian salinity 
crisis, with palaeogeographical projection of 
Mediterranean–Atlantic gateways. The labels 
illustrate the timing and mechanisms of vertical 
motion that restricted Atlantic–Mediterranean 
connectivity (~5.33–7 Ma). b, Cartoon of slab 
morphology below Gibraltar at ~8 Ma. Arrows 
illustrate absolute plate motions for Africa and 
Iberia with slower central–eastern Betic motion. 
The Messinian landmass configuration required for 
Atlantic–Mediterranean connection or restriction 
was controlled by Africa–Iberia convergence and 
related geodynamic forces. Panel a adapted from 
ref. 87, CC BY 4.0. Panel b adapted from.85, Springer 
Nature Ltd.



Nature Reviews Earth & Environment

Review article

Ensuing long-term global warming was associated with long-term 
global sea-level rise106,107,117.

Lack of foraminifera hinders Mediterranean palaeoclimate recon-
structions through the MSC, although Messinian palynological118 and 
organic biomarker records119–122 indicate that the Mediterranean cli-
mate was warm and dry before, during and after the MSC. Along the 
northern Mediterranean margin, climate was warm and humid, similar 
to present-day conditions, with important river runoff from the Alps 
(Rhone and Po)123. Lack of marked vegetation changes during the dif-
ferent evaporite phases suggests that Mediterranean climate did not 
force the MSC, and that the MSC, in turn, did not have a substantial 
impact on Mediterranean climate118.

The classic marl–sapropel alternations of pre-evaporitic MSC 
successions indicate conspicuous precession-paced climate oscil-
lations17,18,67 (Fig. 3), in which sapropels mark relatively wet condi-
tions during precession minima (insolation maxima), when enhanced 
freshwater runoff increased the stratification of the Mediterranean 
water column124. Whatever the role of eustatic sea-level variation, 
precessional forcing is assumed to have continued in the PLG deposits, 
with gypsum beds corresponding to relatively dry climates during 
precession maxima (insolation minima)41,73. Organic geochemical 
data from PLG cycles in northern Italy confirm this, revealing climate 
oscillations21 with gypsum deposition during relatively dry periods 
with reduced river runoff89,116.

Most MSC scenarios envisage a maximum Mediterranean lowstand 
during or after halite deposition, with drawdown estimates of −600 to 
−2,000 m (refs. 6–8), indicating a strong regional circum-Mediterranean  
negative hydrological balance. Mediterranean water level during 
the UG is still contested43. The presence of recurrent, high-diversity, 
shallow-water, brackish ostracod assemblages in most shallow, silled 
Mediterranean basins indicates considerable net freshwater influxes. 
Palaeoclimate models indicate that Mediterranean-wide Lago Mare 
conditions cannot be explained by Paratethys inflow alone, and that 
additional water sources are required109,125. Specifically, runoff from 
high-amplitude African monsoon maxima has been considered126–129. 
Alternatively, Atlantic input to the basin might have contributed dur-
ing glacio-eustatic relative sea-level highstands (Fig. 4), although fully 
marine conditions were not established until the Zanclean69.

Given Mediterranean regional hydroclimate constancy through the 
MSC, periods of strong evaporative water-level drawdown must reflect 
low net precipitation over remote parts of the Mediterranean freshwater 
catchment (Paratethys and/or monsoonal Africa). Conversely, periods 
of major freshwater influx must reflect high net precipitation over far 
reaches of its catchment. The Paratethys is a likely source of consider-
able Messinian freshwater variations because connection between 
the two basins98,130 would have greatly extended the Mediterranean 
freshwater catchment area relative to today. Specifically, the Messinian 
Paratethys unified the Dacian, Black Sea and Caspian Sea basins100,130, 
so that all major Eurasian rivers (Danube, Dnieper, Don, Volga, Syr 
Darya, Amu Darya) drained into the Mediterranean131. In the Tortonian, 
hydrological variations associated with eccentricity-driven north-
ward (southward) midlatitude displacement of the westerlies over the 
Paratethys could have already caused decreased (increased) Paratethys 
overspill and runoff into the Mediterranean132. Assuming that similar 
climate variability continued through the Messinian and that it also had 
a precession-timed component, the MSC net freshwater budget could 
have been affected substantially by Paratethys outflow108,125.

African monsoon intensity tracked the northern summer insola-
tion amplitude (hence the eccentricity-modulated amplitude of the 

precession cycle) throughout much of the Neogene126,127, including the 
MSC128,129. During insolation maxima (precession minima), monsoon-
driven humidity expanded over north Africa126,127,133,134. Large north 
African lakes, such as megalake Chad108,109, might then have drained via 
the ancient Eosahabi river into the Mediterranean135–137. Although Lake 
Chad lies well south of the modern central Saharan watershed, there 
is good evidence in younger geological periods of direct discharge via 
seasonal river floods and wadis138,139. The absence of high-amplitude 
insolation maxima between 5.73 and 5.53 Ma suggests an extended 
interval of relatively weak African monsoons, whereas several high-
amplitude insolation maxima during the UG phase suggest potential 
high-amplitude African monsoon maxima, with enhanced monsoon 
runoff into the Mediterranean basin (Fig. 3).

Overall, it seems that the long-term evolution from pre-evaporitic 
marls to gypsum and salt deposition was not driven predominantly 
by Mediterranean climate change, and that relative sea-level drops 
interacting with tectonic changes at gateways and their impact on 
ocean water exchange were probably the main mechanisms leading 
to progressive salt concentration. This long-term trend was punctu-
ated by precession-based cycles in both sea-level and Mediterranean 
(including Paratethys and African monsoon) hydrology. The influence 
of these astronomically driven variations was amplified progressively 
as Mediterranean restriction increased.

Global relevance of the MSC
The MSC provides an illustration that salt giant formation is much 
more complex than simply evaporating a seawater volume following 
its oceanic disconnection (Box 1). The Messinian salt giant transitioned 
through three restriction phases from the open ocean (Figs. 1, 2). First, 
restricted two-way exchange with maintained sea-level connection 
between the Mediterranean and Atlantic resulted in gypsum precipita-
tion with marine geochemical signatures (PLG phase). Second, severely 
restricted oceanic inflow, sufficient to maintain evaporite-ion flux while 
Mediterranean sea level fell, drove halite deposition. Third, extremely 
limited, intermittent oceanic inflow led to continental-dominated, non-
marine evaporite deposition alternating with brackish water conditions 
(UG phase). The sequence was terminated by abrupt reconnection 
and progressive restoration of normal marine conditions throughout  
the basin, re-establishing two-way Mediterranean–Atlantic exchange 
in the Early Pliocene11,24. Return flux of MSC residual brine ions into 
the open ocean occurred over ~30,000 years11 (Fig. 6), and its impacts  
on open ocean circulation and climate have yet to be investigated.

Throughout all Mediterranean salt giant evaporitic phases, pre-
cession-timed runoff and global sea-level variations interacted to 
drive sedimentary environmental cyclicity due to greater or weaker 
freshwater admixtures and/or greater or weaker oceanic inflows  
to the basin, which overprinted marine connectivity changes due to 
tectonic gateway geometry changes. Model-based sensitivity tests 
indicate that even subtle fluctuations in freshwater budget or sea level 
would have sufficed to switch between gypsum and marl deposition74. 
Precession-timed arid-to-humid and precession-timed sea-level cycles 
both occurred at amplitudes relevant to the sedimentary regime, but 
the precise phase relationship between their impacts remains elusive; 
these processes could have partially amplified or cancelled each other. 
More advanced hydrogeochemical models that integrate both forcing 
mechanisms will be required if we are to fully understand gypsum for-
mation under restricted marine conditions. Hydrogeochemical mod-
elling of salt giants can also provide useful information about the link 
between seawater exchange restrictions at the gateway sill and salinity 
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evolution of the evaporite basin72,79,92. These models track salinity as 
a single variable, or at most divide salinity into three contributions: 
gypsum (Ca and SO4), halite (Na and Cl), and other salts (K, Mg, HCO3

−). 
This simplification, which aids numerical model solution, comes at the 
expense of a more correct thermodynamic description of the brine and 
its evolution during salt giant formation.

The exact drawdown amount remains a key unknown regarding 
halite and non-marine gypsum precipitation, when the evaporite 
basin was semi-isolated from the ocean. Maximum lowstands based 
on seismic interpretations combined with numerical modelling differ, 
with values between −600 m and −2,000 m, assuming that all observed 
Messinian erosional surfaces formed subaerially. At times of severely 
restricted or negligible Atlantic inflow, Mediterranean evaporites are 
expected to contain a mineralogical imprint of continental runoff. 

The low Ca2+:Cl− and SO4
2−:Cl− in continental runoff enables gypsum 

precipitation at much lower salinities than when forming from evapo-
rating seawater23,140. Future hydrogeochemical models that integrate a 
sound thermodynamic description of high-salinity brines80 will be able 
to test the hypothesis that increased relative importance of riverine 
inputs produces a substantial mineralogical assemblage change in 
a salt giant. Such models can also evaluate whether a large (>1.5 km) 
drawdown is required to attain brine saturation with respect to the 
highly soluble mineral bischofite, which is known to have precipitated 
during the MSC based on pore water geochemical tracers measured 
from the Discovery, Hephaestus and Kryos deep-sea hypersaline brines 
on the Mediterranean Ridge141–143.

Almost all salt-giant-related research so far has focused on their 
nature and causes15,144 with little consideration of their potential to 
drive wider environmental change145,146. This is partly because of an 
assumption that impacts outside the salt basin will be synchronous 
with evaporite formation. Some MSC research has challenged that 
assumption24,147 and, in doing so, has initiated new research into the 
chemical and physical consequences of the MSC and salt giants more 
generally for regional and global climate.

Although the impact of evaporite formation and subsequent 
weathering on ocean chemistry has been known for some time146, their 
potential to drive rapid carbon cycle changes and associated climate 
change remains enigmatic145. Modelling of evaporite weathering and 
deposition suggests that despite the much larger halite volume that 
is typically preserved in salt giants, it is the formation and dissolution 
of giant calcium sulfate (gypsum or anhydrite) deposits that can have 
global consequences as an episodic driver of carbon cycle changes145. 
These global consequences could occur because oceanic Ca2+ removal 
via CaSO4 deposition decouples the oceanic Ca2+ and HCO3

− sinks, caus-
ing a decrease in CaCO3 burial and, consequently, increased ocean pH, 
lower atmospheric pCO2 and global cooling. Similarly, the return of 
Ca2+ ions to the ocean from weathered gypsum can drive warming145.

Most biogeochemical models have ignored evaporite-driven 
 perturbations to seawater chemistry148,149, assuming that over time-
scales >100 kyr, evaporite precipitation and weathering are balanced. 
Formation of kilometre-thick MSC evaporites, and their preservation 
over the subsequent ~5 million years of Earth history, reflects approxi-
mately 7–10% net evaporite-ion extraction from ocean water over this 
period4,38. Bearing in mind that the MSC is by no means the largest of 
the salt giants146, this demonstrates that the assumption of evaporite 
precipitation–weathering balance can only be true on multimillion-
year timescales at best, and suggests that current carbon cycle models 
could be missing an important intermediate-timescale climate driver145.

Initial sensitivity experiments that explored the impact of gypsum 
precipitation and weathering on the carbon cycle recognized that pre-
cipitation and preservation of any gypsum represents a net  reduction 
in oceanic [Ca2+] and expressed this as a constant Ca2+ forcing145 for 
the duration of salt giant formation. In detail, however, the Ca2+ ion 
flux associated with a salt giant is not constant but far more complex, 
reflecting cyclic evaporite formation and the evolving connectivity 
history of the salt-bearing basin. For the MSC, this means that during 
the PLG, when gypsum–marl alternations formed under conditions 
of two-way Atlantic–Mediterranean exchange26, Ca2+ ion loss from 
the global ocean occurred episodically, reflecting each precipitation 
event24. It is also likely that return flux to the global ocean occurred 
as the newly formed gypsum layers partially dissolved24. This return 
flux cannot have occurred during the later MSC stages, when there 
was no Mediterranean outflow26. Any ions liberated by exposure and 
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weathering of evaporites during periods of lowered Mediterranean sea 
level would have remained trapped within the basin at least until Early 
Pliocene re-establishment of two-way exchange and flushing of residual 
brines, which took ~30,000 years11 (Fig. 6). New model simulations that 
incorporate realistic Ca2+ ion flux records are therefore required to 
evaluate the magnitude of any evaporite-driven climate perturbation.

Reconstructing the magnitude and timing of evaporite-ion fluxes 
is challenging. The salt volume preserved today is not a robust measure 
of the total evaporite ions extracted but rather represents a minimum 
value for what was originally precipitated. Additional evaporites might 
have been precipitated and dissolved either before burial or during 
later exposure by orogenic processes5. Evaporite minerals also precipi-
tate and dissolve three orders of magnitude more rapidly than other 
sediments150. Consequently, their impact on the carbon cycle can be 
orders of magnitude quicker than the carbonate–silicate weathering 
feedback145. Through burial, evaporites can also be stored in rock suc-
cessions for long periods outside the ocean–climate system28. As a 
result, evaporite-mediated ion extraction from, and return to, the 
ocean can be rapid (103−104 years), occurring during or shortly after salt 
giant formation, as is largely the case for the MSC; or it can be gradual 
(much more than 106 years) where dissolution occurs post burial, as is 
occurring in Arctic Canada where a ~290-million-year-old gypsum salt 
giant is now emerging from beneath thawing and eroding permafrost151.

Constraints on the evaporite-ion flux in addition to the salt giant 
succession itself are clearly required. One possibility is to use the seawa-
ter [Ca2+] record152. To capture perturbations expected from salt giant 
formation, a high-resolution record is required. However, currently 
only a handful of [Ca2+] measurements exist for the entire Cenozoic 
(ironically mainly from evaporite fluid inclusions152). These reveal a gen-
eral decline over the past 100 million years152 but are too few to detect 
a net [Ca2+]sw reduction over the MSC duration, let alone the abrupt 
sub-precessional-scale step-like structure that should be evident from 
evaporite-ion extraction and return. By integrating Ca-evaporite for-
mation and weathering processes, coupled carbon and calcium cycle 
models will provide more mechanistically sound explanations of the 
links between geological and geochemical cycles, and climate.

Physical processes associated with salt giant formation could also 
have a potential impact on global climate. Advection of dense, cold 
and/or salty overflow water from marginal basins strongly influences 
the oceanic distribution of heat and salt, exerting a powerful influence 
on thermohaline circulation and deep-water formation153. In the North 
Atlantic today, the densest of these overflows emanates from the Medi-
terranean Sea154, depositing a prominent overflow plume that contours 
around the Iberian margin155. Sensitivity experiments that exclude 
present-day Mediterranean–Atlantic exchange result in ~1° cooling 
over the North Atlantic, and a 0.7–2.3-Sv (1 Sv = 106 m3 s−1) reduction 
in the Atlantic Meridional Overturning Circulation153,156. These results 
indicate that the negative Mediterranean hydrological budget, com-
bined with exchange through the Gibraltar Strait, is enough to generate 
a climatically important high-density water mass today. However, the 
extent to which overflow was a driver of Late Miocene climate remains 
an outstanding question.

Summary and future perspectives
In this Review, we have provided evidence that both geodynamic and 
eustatic sea-level forcing are crucial for initiating and terminating 
salt giant formation with a subsidiary role for regional climate. The 
formation and dissolution of giant calcium sulfate (gypsum and anhy-
drite) deposits can have global consequences as an episodic driver 

of carbon cycle changes. Mediterranean overflow was triggered by 
initial tectonic restriction of Mediterranean–Atlantic exchange as 
the two pre-Gibraltar marine gateways formed and closed, allowing a  
Mediterranean–Atlantic density contrast to develop147. This restric-
tion process occurred at ~8 Ma (ref. 147) (Fig. 5). It pre-dated evaporite 
deposition by 2 million years and persisted after the MSC through-
out the Pliocene and Pleistocene155. Similar dense overflows might be 
associated with every marginal basin in which a salt giant has formed, 
and, like the MSC, their duration will not have been synchronous with 
salt giant formation. The impact of these overflows on thermohaline 
circulation should be a target for future research.

During salt giant formation, marginal basin water density will 
have been much higher, and evaporite–sediment alternations, such as 
those of MSC successions, indicate fluctuating brine concentrations. 
However, only during two-way exchange episodes will this produce a 
high-density overflow plume that could affect thermohaline circula-
tion. Modelling these extreme high-density overflows is challenging 
because the narrow, shallow marine gateways required for overflows 
to form are too small to be fully resolvable in current Earth system 
models. Instead, numerical models use various parameterizations to 
mimic overflow mixing in model simulations157,158; none is currently 
compatible with densities that far exceed contemporary overflow 
observations154. Improved model parameterization of overflow mixing 
and development of proxies that allow overflow density reconstruction 
will be critical to addressing this challenge.

Finally, this Review provides context for the upcoming Land-2-Sea 
drilling project in 2024. IMMAGE (Investigating Miocene Mediterranean– 
Atlantic Gateway Exchange) will recover 8-million to 4-million-year-old 
sediments from both gateways and the Mediterranean outflow plume 
in the Atlantic before, during and after the MSC. The project objective 
is to identify and quantify the impact of evolving Mediterranean–
Atlantic exchange on regional and global environmental change, and 
specifically its potential contribution to cooling during this period, 
which ultimately resulted in initiation of Northern Hemisphere glacia-
tion111. This project will combine offshore drilling with International 
Ocean Discovery Program Expedition 401 on either side of the Gibraltar 
Strait and onshore drilling with the International Continental Scientific 
Drilling Program in Morocco and Spain, targeting the two precursor 
Atlantic–Mediterranean marine connections that have been uplifted 
and preserved on land. IMMAGE, the first Land-2-Sea drilling pro-
ject, offers great scope for addressing the many remaining unknowns  
outlined here.

Published online: xx xx xxxx
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